Modeling of Evaporation and Decomposition Processes of H₂SO₄ in SI Cycle

2007.4.17

Jong Ho KIM

- Basic Concepts of Chemical Process Simulator
- Overview of the SI Cycle Section 2 Process
- Modeling of Sulfuric Acid Evaporation Process
- Modeling of Sulfuric Acid Decomposition Process
- Summary

Basic Concept of Chemical Process Simulator

Models

- Characteristic equations of a chemical process with a computer program
- Uses underlying physical relationships
 - Mass balance, enthalpy balance
 - Equilibrium relationships
 - Rate correlations (reaction and mass/heat transfer)

Predicts

- Stream flow rates, compositions and physical properties
- Equipment sizing, cost evaluation, process optimization
- Answers "what if" questions
 - Effective in SI process design

Basic Concept of Chemical Process Simulator

Structure

- Types of the simulator
 - Aspen Plus
 - ChemCAD
 - Prosim

Overview of the SI cycle

Overview of the SI Cycle

Overview of the SI Cycle

The function of Section 2

- Concentration of Sulfuric Acid
 - less material heat to high temperature means less sensible heat must be supplied.
 - smaller heat exchanger
 - less cost
- Decomposition of Concentrated Sulfuric Acid

Isobaric Concentrator (1)

- Description :
 - The sulfuric acid is pumped to the operating pressure of isobaric concentrator.
 - The concentration increases at the exit of isobaric concentrator.
- Modeling :
 - Isobaric concentrator is modeled as the heater followed by an adiabatic flash tank.

Vacuum Distillation Column(2)

- Description :
 - The liquid product of isobaric concentrator is further concentrated in a series of three reduced pressure flashes before entering the vacuum distillation column.
 - The bottom product of the vacuum distillation column is almost concentrated to the azeotropic concentration.
- Modeling :
 - Vacuum distillation column is modeled with the combination of flash tanks and RADFRAC.

Isobaric Concentrator(1)

Recuperator

- Description :
 - The sulfuric acid is heated to the vaporization temperature in the recuperator.
 - Some of the sulfuric acid decomposes into SO_3 and H_2O .
 - The recuperator retrieves much of the heat remaining after sulfuric acid decomposition.
- Modeling :
 - The recuperator is modeled as two Gibbs reactors coupled by a heat stream.

Decomposer

- Description :
 - SO₃ decomposes into SO₂ and O₂.
 - Small amount of undecomposed H_2SO_4 is decomposing into SO_3 and H_2O .
 - The outlet stream from decomposer is cooled, transferring heat to the decomposer feed.
- Modeling :
 - The decomposer is modeled as a series of four Gibbs reactors.

Sulfuric Acid Fraction Change in Process Stream

Mole Fraction Change in Process Stream

Mole Fraction Change vs. Temp.

Flow-sheet of SI process – Section 2

Complete Simulation Flowsheet for Section 2

- The flow-sheet for the sulfuric acid evaporation and decomposition processes has been developed based on the S-I cycle.
- Some sensitivity analyses indicate that :
 - Concentration is more effective in vacuum distillation column than in isobaric concentrator.
 - Most of the sulfuric acid has decomposed into SO_3 and H_2O at the exit of recuperator.
 - In the decomposer, most of SO_3 has decomposed into SO_2 and O_2 with small amount of H_2SO_4 decomposition.

THANK YOU !