IAEA Special Event

19-21 September, 2006

#### **Technical Issues**

Per Brunzell Westinghouse Sweden



#### **Nuclear Fuel Cycle**



#### **Uranic industry players**

NC&S













(1/3 Urenco)





**BNFL** 

# 34, twenty tonne dump trucks full of uranium ore are required to make 4 fuel assemblies



#### 1x 30B Cylinder



**1.5tonne U as UF<sub>6</sub> @ 4.95%** 



### **LEU - One ASTM spec. for UF<sub>6</sub>**



### **Fuel Supply Schedule**



#### **LWR Fuel Fabrication**



#### **PWR Fuel Assembly**



#### **BWR Fuel Assembly**



#### **VVER-1000 Fuel Assembly**



## LWR Fuel Design Requirements

- Mechanical Compatibility
- Thermal Hydraulic Compatibility
- Cycle Specific Requirements
- Reactor Core Design
- Materials
- Licensing Requirements

All fuel bundles must be tailor-made!

#### **BWR Enrichment Distribution**





3.40 wt% U-235, 3.50 wt% Gd<sub>2</sub>O<sub>3</sub>

#### Conclusion

- UF6 can be "banked" (ASTM Spec, Blending)
- Finished Fuel Assemblies difficult to bank (Reactor and cycle specific designs, Licensing issues)