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Abstract A three-mode model for the resistive wall modes based on the toroidally coupled resistive wall tearing
modes is developed. The linear neoclassical tearing mode response is used at the singular surfaces to enhance
plasma inertia and reduce the toroidal rotation speed for stability. The dispersion relation is obtained from the
determinant of a 6×6 matrix. The toroidal rotation profile for the stability of the coupled mode can be
determined by coupling the dispersion relation to the toroidal momentum balance equation. It is illustrated that
toroidal rotation profile is more relevant to the stability of the resistive wall modes than the toroidal rotation
speed at a given radius. The appearance of the magnetic islands degrades plasma confinement. It is shown that
the width of the magnetic island can be controlled by the bootstrap current density induced by the ablation of
the injected pellet at the island O-point. The magnetic island can be healed if the pellet induced bootstrap
current density is large enough. It is also demonstrated that tailoring plasma profiles can control the stability of
the island.

1. Introduction

The toroidal rotation speed that is required to stabilize the resistive wall modes in tokamaks
is important to the successful operation of advanced tokamaks such as International
Thermonuclear Experimental Reactor (ITER) [1]. We develop a three-mode model including
the effects of the toroidal coupling [e.g., toroidally coupled (m,1) and (m

€ 

±1,1) mode, with
poloidal mode number m=3] to describe resistive wall modes in tokamaks. The dispersion
relation for the mode is derived from the determinant of a 6×6 matrix. The enhancement of
plasma inertia, that leads to a reduced toroidal rotation speed for stability, and the dissipation
resulting from the neoclassical effects are included in the layer physics. The toroidal plasma
rotation speed at each rational surface and the mode frequency appear in the dispersion
relation. In regions between the magnetic axis and a rational surface, between two rational
surfaces (there are two such regions in our model), and between a rational surface and the
plasma boundary, the toroidal plasma rotation profile is calculated by solving toroidal
momentum diffusion equation including a momentum source with plasma rotation speed at
the magnetic axis, at the rational surfaces, and at the plasma boundary as the boundary
conditions. These coupled equations uniquely determine a toroidal plasma rotation profile for
the stability of the resistive wall modes described by the model. The model is especially
useful in determining the toroidal rotation profile for the stability when the toroidal rotation
speed is externally controlled as is frequently done in the experiments. From the results of
this model, it is noted that the toroidal rotation profile is more important than the rotation
speed at a given radius in determining the stability of the resistive wall modes in tokamaks.
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The appearance of magnetic islands in tokamaks degrades plasma confinement time for
tokamaks that are intended for producing fusion power. It has been known that using the
momentum of the radio frequency waves to drive a current inside the island can heal the
island. However, to provide design flexibility, it is highly desirable to have alternative
methods to control the magnetic island besides using the current driven by radio frequency
waves. Here, we propose to inject pellets at the island O-point to heal the island. We derive
the island evolution equation to include the bootstrap current density that is driven by the
peaked plasma density inside the island resulting from the vaporization of the pellet. The
effects of the asymmetric island shape have to be taken into account to obtain non-trivial
results. We show either that the saturated island width can be reduced or that the island can
be healed depending on the magnitude of the pellet driven bootstrap current. We also note
that by controlling the plasma profiles one can also control magnetic islands. For a flat
density profile, a flat electron temperature profile, and a steep ion temperature profile,
magnetic island formation can be prohibited. The results of the theory can be tested in
existing and future tokamak experiments such as ITER.

2. A Three-Mode Model for Resistive Wall Modes

The three-mode model for resistive wall modes developed here is based on the toroidally
coupled resistive wall tearing mode [2-7]. To obtain an analytic expression for the dispersion
relation, we solve Ampere’s law by assuming a parabolic equilibrium current density profile
and adopting the large aspect ratio expansion procedure in treating toroidal coupling [6,8].
The model consists of plasmas confined in the region 

€ 

0 ≤ r ≤ a, a resistive wall located at r =
b > a, and vacuum in the region 

€ 

a ≤ r ≤ b and 

€ 

r ≥ b. Here, r is the local minor radius. For an
(m,n) mode with the singular surface located at r = 

€ 

rsm , we characterize it in terms of the
perturbed poloidal flux 

€ 

ψm (r)  that is parameterized by its value at the singular surface 

€ 

ψsm
and at the wall 

€ 

ψwm , where m is the poloidal mode number and n is the toroidal mode
number. The boundary conditions are that 

€ 

ψm (r)  vanishes at r = 0 and 

€ 

∞ , and both 

€ 

ψm (r)
and 

€ 

dψm /dr  are continuous at r = a. At r = 

€ 

rsm , and r = b, 

€ 

ψm (r)  is continuous. Matching the
discontinuity of 

€ 

dψm /dr  to that of the linear neoclassical tearing mode at r = 

€ 

rsm , and to that
of the resistive wall at r = b yield a 6×6 matrix

€ 

Dssm+1 Dswm+1 Dssm+1
m Dswm+1

m 0 0
Dwsm+1 Dwwm+1 Dwsm+1

m Dwwm+1
m 0 0

Dssm
m+1 Dswm

m+1 Dssm Dswm Dssm
m−1 Dswm

m−1

Dwsm
m+1 Dwwm

m+1 Dwsm Dwwm Dwsm
m−1 Dwwm

m−1

0 0 Dssm−1
m Dswm−1

m Dssm−1 Dswm−1

0 0 Dwsm−1
m Dwwm−1

m Dwsm−1 Dwwm−1

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

€ 

ψsm+1

ψwm+1

ψsm

ψwm

ψsm−1

ψwm−1

 

 

 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 

 = 0. (1)

For simplicity, we will not display the expressions of the matrix elements and refer the
readers to Ref.[9] for detailed calculations. The dispersion relation for the coupled modes is

det D = 0, (2)

where D denotes the matrix in Eq.(1).
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The ‘ss’ elements in Eq.(1) contain 

€ 

′ Δ (γ − inΩm ) , the dimensionless tearing mode stability
parameter. Here, 

€ 

γ  is the mode frequency, and 

€ 

Ωm  is the toroidal rotation frequency of the
plasma at r =

€ 

rsm . We adopt the linear neoclassical tearing mode response for 

€ 

′ Δ  to enhance
plasma inertia [6,10-13]. The expression for 

€ 

′ Δ (γ) is

€ 

′ Δ δ= - π

€ 

Q
8

 

€ 

Γ(Q −1
4
)

Γ(Q + 5
4
)

, (3)

where 

€ 

δ
2= 

€ 

δη

€ 

δin , Q = 

€ 

δin /

€ 

δη , 

€ 

δη
2= 1/( γ

€ 

τ R ), 

€ 

δin
2 = 

€ 

γ 2

€ 

τH
2 N, 

€ 

τ R= 

€ 

rs
2 /η , 

€ 

τH =R/(ns

€ 

VA ), s

=

€ 

rsqs′ /qs, 

€ 

VA=

€ 

B ρ , η is plasma resistivity, ρ is mass density, R is the major radius, q is the
safety factor, the subscript s denotes the quantity is evaluated at the singular surface, B is the
magnetic field strength, prime denotes d/dr, and the inertia enhancement factor N is

N = 

€ 

( B
Bp
)2

€ 

µ1

µ1 + γ
 + (1 + 2

€ 

q2)

€ 

γ
µ1 + γ

. (4)

The viscous coefficient 

€ 

µ1 in the banana regime for large aspect ratio tokamaks can be
approximated as µ1 ≈ 0.778 ε1/2 νii +1.6ε3/2 γ, where νii is the ion-ion collision frequency
[14]. For toroidally rotating tokamak plasmas, we substitute γ in Eqs.(3), and (4) with

€ 

(γ − inΩm )  at each singular surface.

In between singular surfaces, plasma boundary, and the magnetic axis, we solve a simple
toroidal momentum equation for toroidal angular frequency Ω

€ 

1
r

€ 

∂
∂r

(r

€ 

DΩ

€ 

∂Ω
∂r

) = S, (5)

where 

€ 

DΩ  is the diffusion coefficient, most likely to be anomalous, and S is the momentum
source.

It is obvious that when the toroidal angular frequency at one singular surface 

€ 

Ωm  is modified
by the external toroidal momentum source, the angular frequencies at two other singular
surfaces can respond to maintain the stability of the coupled mode. This qualitative
conclusion seems to be compatible to the experimental observations [15,16]Thus, we
conclude that the toroidal rotation profile is more important than the toroidal rotation speed at
a given radius. The quantitative analysis of the dispersion relation together with the toroidal
momentum balance equation will be presented separately [9].

3. Control of Magnetic Islands by Pellet Injection

When a pellet is ablated in the vicinity of a rational surface inside the plasma, the local
plasma density increases. Because plasma confinement improves in the vicinity of the island
[17], the peaked local plasma density lasts a long time. This phenomenon is observed in
experiments and the helical variation of the peaked density following that of the island
structure is called a snake [18,19]. The peaked plasma density inside the island modifies the
local bootstrap current density and thus the stability property of the island.
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In the vicinity of an island, it is convenient to label the magnetic surface in terms of the
normalized helical flux function 

€ 

Ψ . The dominant part of 

€ 

Ψ  is symmetric relative to the
singular surface and has the form of [20]

€ 

Ψ  = 

€ 

X 2 - cosξ , (6)
where 

€ 

Ψ = - Ψ/

€ 

˜ ψ 0, 

€ 

˜ ψ 0 is 

€ 

˜ ψ  evaluated at 

€ 

rs , 

€ 

δ ˜ ψ  = 

€ 

˜ ψ cosξ is the perturbed poloidal magnetic
flux due to the presence of the island, 

€ 

˜ ψ  is the amplitude of the perturbation, ξ = mθ - nζ, θ
is the poloidal angle, ζ is the toroidal angle, X = x/

€ 

r w , x = ( r -

€ 

rs )/

€ 

rs , 

€ 

r w= 

€ 

rw /

€ 

rs , 

€ 

rw=

€ 

2qs
2 ˜ ψ 0 ( ′ q sB0rs)  is a measure of the width of the island, and 

€ 

B0is the magnetic field strength
at the magnetic axis. The full width of the island w = 

€ 

2 2

€ 

rw . The region inside the separatrix
of the island is defined by –1 <

€ 

Ψ < 1. The island O-point is located at 

€ 

Ψ = -1, and the
separatrix is at 

€ 

Ψ =1. Because the width of the island is finite, solving Ampere’s law to
higher order results an asymmetric modification to Eq.(6) [21-23]

€ 

Ψ 1 = - 

€ 

1
3

€ 

r w

€ 

X 3+ X C (ξ), (7)

where C(ξ) is a function of ξ. The detailed functional dependence of C(ξ) is not important to
our theory because it cancels out in our calculations. To investigate the stability property of
the island in the presence of the pellet induced bootstrap current density, we need to know the
asymmetric part of 

€ 

Ψ .

The pellet induced bootstrap current density

€ 

Jb  is

€ 

Jb= - 2.4 

€ 

c
rw

€ 

dp
dΨ 

〈

€ 

ε
Bp

 

€ 

∂Ψ 
∂X

〉, (8)

where the angular brackets denote the average over the constant 

€ 

Ψ  surface [23]: 〈A〉 =
(

€ 

dξ(1+ r w X)A / |∂Ψ ∫ /∂X |)/

€ 

dξ(1+ r w X) / |∂Ψ ∫ /∂X |. Note that 

€ 

ε  and 

€ 

Bp  are inside the
angular brackets in Eq.(5). This indicates that the 

€ 

rw  modifications to those quantities are
important. After performing the averaging processes using Eqs.(6) and (7) yields,

€ 

Jb= - 4.8 

€ 

εs

€ 

cp
rsBp

€ 

1
p
dp
dΨ 

{[3+2(s-1)][

€ 

E(1/k)
K(1/k)

−
k 2 −1
k 2

] - 

€ 

8
3
sin−1(1/k)
K(1/k)

 

 
 

 

 
 

2

}, (9)

where k = 

€ 

2 (1+ Ψ ) , K, and E are complete elliptic integral of the first and the second kind
respectively.

Substituting Eq.(9) into Ampere’s law, integrating it radially, and matching the jump in the
radial component of the perturbed magnetic field to that of the tearing mode stability
parameter yield an evolution equation for the width of the island

€ 

∂rw
∂t

 = 0.43

€ 

ηc 2

4π
{

€ 

′ Δ  + 0.503[1+2.646(s-1)] 

€ 

εs
rw

€ 

β p

€ 

qs

rs ′ q s

€ 

1
p(−1)

€ 

dp
dΨ 

 },    (10)

where 

€ 

β p= 

€ 

8πp(−1) Bp
2  is the ratio of the peaked plasma pressure inside the island to the

pressure of the poloidal magnetic field, and p(-1) is the plasma pressure at the island O-point.
We have assumed that dp/d

€ 

Ψ  is a constant in deriving Eq.(10) for simplicity. From Eq.(9),
we see that pellet induced bootstrap current density indeed affect the island evolution, and its
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saturation. If we include the effects of the flattening of the equilibrium bootstrap current
density into Eq.(10), we obtain

€ 

∂rw
∂t

=0.43

€ 

ηc 2

4π
{

€ 

′ Δ +0.503[1+2.646(s-1)] 

€ 

εs
rw

€ 

β p

€ 

qs

rs ′ q s

€ 

1
p

€ 

dp
dΨ 

-2.58

€ 

εs
rw

€ 

β p0

€ 

qs

rs ′ q s

€ 

rs
p0

€ 

dp0
dr

},(11)

where the subscript 0 indicates the equilibrium quantity is evaluated at 

€ 

rs  prior to the
appearance of the magnetic island.

For a negative value of 

€ 

′ Δ  and a negative value of 

€ 

rsdp0 /dr /

€ 

p0 , the saturated island width is

€ 

rw  = 

€ 

( εsqs rs ′ q s){2.58β p0rsdp0 /(p0dr) − 0.503[1+ 2.646(s−1)]β pdp /(pdΨ )}
′ Δ 

.      (12)

The width of the saturated island width is reduced if 

€ 

β p |(dp/d

€ 

Ψ )/p| is comparable to

€ 

β p0 |(

€ 

rsdp0 /dr )/

€ 

p0 |. Indeed, a peaked plasma pressure that is about a factor of two larger than
the ambient pressure has been observed in snakes [19]. Thus, 

€ 

β p  can be about a factor two
larger than 

€ 

β p0 , and if |( dp/d

€ 

Ψ )/p| is comparable to |(

€ 

rsdp0 /dr )/

€ 

p0 | the saturated island
width is reduced by about a factor of 40% if s =1. Of course, if the terms in the numerator
cancel each other, the neoclassical island is eliminated completely. To achieve such
precision, the size of the pellets has to be controlled, and plasma parameters around 

€ 

rs  prior
to the appearance of the magnetic islands measured accurately. Likely, one needs to perform
many experiments of this kind to gain the necessary experience to perfect the control scheme.

The results shown in Eqs.(10)-(12) can be further refined by including the electron and the
ion temperature gradients in the bootstrap current density expression. For example, Eq.(10) is
modified to [24,25]

€ 

∂rw
∂t

=0.43

€ 

ηc 2

4π
[

€ 

′ Δ +0.503

€ 

[1+ 2.646(s−1)]

€ 

εs
rw

€ 

β p

€ 

qs

rs ′ q s
(

€ 

1
p(−1)

€ 

dp
dΨ 

-0.67

€ 

pe
p(−1)Te

dTe
dΨ 

-

1.17

€ 

pi
p(−1)Ti

dTi
dΨ 

)], (13)

where 

€ 

pe is the electron pressure, 

€ 

pi is the ion pressure, and 

€ 

Ti  is the ion temperature. All
these quantities are functions of 

€ 

Ψ . Of course, p(-1) is the total pressure as indicated
previously. To obtain Eq.(13), we have assumed that the ratios of 

€ 

pe Te  and 

€ 

pi Ti   are not a
function of 

€ 

Ψ , and that 

€ 

dTe dΨ  and 

€ 

dTi dΨ  are constants for simplicity. Examining
Eq.(13), it is obvious that it is less effective to use either the electron temperature gradient
term or the ion temperature gradient term to reduce the original drive for the neoclassical
island because the numerical numbers in front these terms are only a fraction of unity.

We also like to point out an interesting possibility to remove neoclassical island by
controlling plasma profiles. As noted in Eq.(13), the contributions of the temperature
gradients to the island evolution equation can be very different from that of the density
gradient. If we include the terms from the temperature gradients in the island evolution
equation, it becomes
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€ 

∂rw
∂t

 = 0.43

€ 

ηc 2

4π
[

€ 

′ Δ - 2.58

€ 

εs
rw

€ 

β p0

€ 

qs

rs ′ q s
(

€ 

rs
p0

€ 

dp0
dr

 - 0.67

€ 

rspe0
Te0p0

€ 

dTe0
dr

 - 1.17

€ 

rspi0
Ti0p0

€ 

dTi0
dr

)].  (14)

Thus, for a flat density profile, and a flat electron temperature profile, neoclassical island can
be healed if ion temperature profile is steep enough to change the overall sign of the terms
inside the parenthesis in Eq.(14).

A similar theory using neutral particle beam injection instead of pellet injection to control
magnetic island has also been proposed with a different method in obtaining the asymmetric
part of the island magnetic surface [26].

4. Conclusions

We have illustrated using a three-model based on the three toroidally coupled resistive wall
tearing modes that the toroidal rotation profile is more relevant to the stability of the resistive
wall modes than the toroidal rotation speed at a given radius.

We have also demonstrated that nonlinear island evolution and the saturation of the island
can be controlled by the bootstrap current density that results from the peaked local density
of ablated pellets at the island O-point. It is possible that the magnetic island can be healed if
the pellet induced bootstrap current density cancels that from the equilibrium in the island
evolution equation. It is also noted that tailoring plasma profiles may heal the island as well.
For a flat density profile, and a flat electron temperature profile, neoclassical island can be
healed if ion temperature profile is steep enough to change the overall sign of the terms inside
the parenthesis in Eq.(14).
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