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Abstract. The interaction between transport and reconnection processes in magnetically confined plasmas is 
discussed. There are two complementary processes that we describe. In the first, we consider magnetic islands in 
a slab geometry to explore the impact of the magnetic island on ion temperature gradient stability. A local theory 
demonstrates a strong stabilising influence as a consequence of the suppression of gradients within the island. 
However, a non-local theory predicts that the presence of the magnetic island permits instabilities with a new 
mode structure that can be unstable. The second process addresses the impact of transport processes on the rate 
of reconnection. Specifically, we calculate the plasma density and flow profiles in the vicinity of the island in 
the situation when free streaming along magnetic field lines dominates over diffusion processes. This 
approximation is valid everywhere except in a narrow layer near the island separatrix, where cross-field 
diffusion competes with parallel free streaming. A solution in this layer is presented and matched to the solution 
in the external region through an intermediate collisional matching region. 
 
1. Introduction 

Tearing modes are generally believed to be detrimental to the fusion performance of 
tokamaks and, in particular, neoclassical tearing modes (NTMs) on ITER are a significant 
issue. In this paper we address two issues associated with the transport physics of tearing 
modes in magnetically confined plasmas. Large magnetic islands lead to a flattening of the 
pressure profile in their vicinity and, therefore, clearly degrade the confinement. However, in 
the case of small, isolated magnetic islands, the situation is less clear. First, the pressure is 
flattened over a small region, so this effect is not great. Second, the effect of the island on the 
pressure and flow profiles could stabilize the electrostatic drift modes responsible for 
turbulent transport. Thus, it is possible that small, isolated magnetic islands may actually be 
beneficial for confinement and, for example, help to trigger transport barriers in the vicinity 
of rational surfaces. We shall explore this possibility in Section 2, where we calculate the 
impact of an isolated magnetic island chain on the stability and structure of the ion 
temperature gradient (ITG) mode. 

The ion polarisation current plays an important role in the evolution of small scale magnetic 
islands. Indeed, it has been proposed as a possible threshold mechanism for neoclassical 
tearing modes (NTMs) in tokamaks. A complication in the theory arises from a narrow layer 
in the vicinity of the island separatrix where the ion polarization current provides a skin 
current. The contribution of this skin current to the island evolution is comparable to the 
contribution from other areas, but has the opposite sign. The net effect of the polarization 
current on tearing mode stability therefore depends on the sign of the sum of the two 
contributions which, in turn, requires an accurate calculation of the skin current (the 
contribution away from the separatrix layer is well-understood). Such a calculation is 
complicated by a number of effects: (1) parallel streaming competes with cross-field 
diffusion, so that density is not constant on a flux surface; (2) the component of electric field 
parallel to the magnetic field, E||, is unlikely to be small, and (3) finite Larmor radius effects 
are important. So far, only the latter effect has been taken into account in the derivation of the 
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polarization current: here, we treat the first and third effects self-consistently, leaving non-
linear effects associated with E|| and a final calculation of the polarization current for future 
work. The calculation and results are described in Section 3. We close in Section 4 with a 
summary. 

2. ITG stability in the vicinity of a magnetic island 

We introduce magnetic islands into a sheared slab model of the plasma, with magnetic field: 
 zzBB ∇×∇+∇= ψ0  (1) 
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Here, we have defined a Cartesian coordinate system (x, y, z). The shear length, Ls, defines the 
rate of shear in the magnetic field. This geometry provides islands of half-width 
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We treat the island as a perturbation to the basic sheared slab equilibrium, in which flux 
surfaces are surfaces of constant x and density and temperature are functions of x only. It is 
convenient to define the non-adiabatic part of the distribution function, gj, relative to the 
Maxwellian, FMj(x): 
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where Φ is the electrostatic potential, qj is the species charge and Tj is the temperature. We 
work in the island rest frame, in which case there is a radial electric field, Er, and associated 
potential Φ0=−Erx. In addition there are two more contributions to the potential. One is 
related to the different responses of the ions and electrons to the magnetic island and is 
independent of time. This we denote Φ , which varies on a length scale ~w and is localised in 
the vicinity of the island. The second is associated with fluctuations, and is denoted tie~ ω−Φ , 
where ω is their complex mode frequency. 

To make analytic progress, we make a number of approximations. In particular, we consider 
long, thin islands, such that Kw<<1; we consider fluctuations with short perpendicular 
wavelength compared to the island width: kyw~kxw<<1, and Larmor radius effects are 
assumed to be small. These approximations permit an analytic reduction of the electron and 
ion gyro-kinetic equation as described elsewhere [1]. Splitting the non-adiabatic part of the 
distribution function into the sum of a time-independent piece and a fluctuating piece, we 
linearise with respect to the fluctuating terms but retain non-linearities in the time-
independent perturbations. This yields two types of terms in the resulting quasi-neutrality 
expression: ones that do not depend on time, that describe the self-consistent equilibrium in 
the vicinity of the island, and fluctuating terms that describe the nature of drift wave 
instabilities in the presence of the magnetic island. Equating the terms that do not depend on 
time provides an expression for the density and electrostatic potential, Φ . In particular the 
density is flattened across the island O-point, while a gradient is maintained near to the island 
X-point. The kinetic equations only predict that the density and potential are constant on the 
perturbed magnetic flux surfaces, but do not determine the form of the profiles across the flux 
surface (other than that they are related through quasi-neutrality). To do this in a fully 
consistent model, one must introduce a model for the cross-field transport. We avoid this 
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issue by choosing the form of the profile, rather than the transport model. Thus we have, for 
the density and potential: 
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Here n0(x) is the reference density profile associated with the Maxwellian FMj(x), which is 
assumed to have a constant gradient; (Ln)−1=−(1/n0)(dn0/dx), and the normalised equilibrium 
E×B drift frequency ωE=−Ln eΦ0'/Te, where the prime denotes a differential with respect to x. 
Finally, we have introduced a flux surface function χ=2x2/w2−cosKy. The model that we use 
for the profiles must satisfy the boundary condition h(χ)=x far from the island. We choose: 
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where σ=|x|/x and χ=1 is the separatrix flux surface. The Theta-function describes the 
flattening of the density inside the magnetic island. 
Having determined the equilibrium configuration from the time-independent terms of the 
quasi-neutrality equation, we now equate the fluctuating terms. Assuming a single dominant 
wavenumber in the y-direction, ky, this provides the following “local” eigenmode equation for 
the structure and stability of drift waves: 
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We have defined the sound speed Larmor radius, ρs, the electron diamagnetic frequency, ω*e, 
b=(kyρs)2, τ=Te/Ti and ηi=Ln/LT is the ratio of ion density and temperature gradient scale 
lengths. The effects of the profile modification are captured in the variable S, where: 
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which has a weak dependence on y and a somewhat stronger dependence on x (on a length 
scale ~w). Comparing with the standard expression for drift waves in a sheared slab, we see 
that there are two modifications due to the island. First are the terms labelled with αd. These 
represent the effect of the sheared E×B flow around the island due to the potential Φ . Second 
are the terms labelled αn, which represent the modifications to the density profile (and hence 

ω*e). The α parameters are introduced as a 
convenient way to map smoothly from the 
situation with no island (αn,d=0) to the full 
island physics (αn,d=1). 

Focussing on the ion temperature gradient 
(ITG) mode, we solve Eq (7) in the local 
(in y) approximation to explore how 
profile modifications affect stability. The 
results are shown in Fig 1 for ηi=100, 
τ=25, w/ρs=5, Ls/Ln=5, ωE=−0.5. This 
figure shows the local growth rate at two 
values of y, corresponding to the island X-
point and O-point. Referring to Fig 1, 
consider first the full and dotted curves. 
For these, we fix αn=0 and vary αd to 
illustrate the impact of the flow shear 
without the modifications to the density 

Figure 1: Growth rate as the α parameters are 
increased from 0 (no island) to 1 (full island). The 
full and dotted curves show the impact of the 
sheared flow profile, while the dashed curves 
include both flow and density profile 
modifications. 
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profile. It can be seen that the flow shear has a destabilising effect, which is consistent with 
the results of Wang et al [2] for the level of flow shear that we calculate here. The density 
profile modifications, on the other hand, are strongly stabilising, particularly at the value of y 
corresponding to the island O-point.  

Such a local stability analysis is rather crude: it provides only a qualitative indication of the 
growth rate, and there is no information about the mode structure in the y-direction. To 
explore this more rigorously, we return to the full 2-D equation describing the drift mode 
stability by replacing ky→i∂/∂y in Eq (7) (in a form where all ky factors appear in the 
numerator of each term). Employing Fourier modes in the y-direction, and finite differences 
in the x-direction, we solve the full 2-D system, to derive the mode structure illustrated in Fig 
2. We note two important features: (1) from Fig 2a, we see that the mode is not localised at 
the position of maximum instability (ie the X-point), as one might naively expect; (2) from 
Fig 2b, a number of ky values are coupled, but the frequency spectrum is relatively narrow.  

 
To understand why the mode is not localised around a position of maximum instability, one 
can develop a WKB solution and, by assuming a localised solution exists (in y), it is possible 
to develop a self-consistent ordering as in [1], for example. There, we found that to leading 
order the stability is determined from Eq (7), but with a specific complex ky=k0 that satisfies 
dω/dky =0. The imaginary part of k0 then determines the shift in the y-position of the mode 
relative to the X-point (ie the maximally unstable position). The theory is complicated by the 
2-D nature of the shear function, S, so here we shall illustrate the essential features with a 
simple model. This model involves setting αn=αd=0 in Eq (7), and introducing a y-
dependence through a sinusoidally varying ηi. Eq (7) can be obtained by assuming an eikonal 
form for the solution of the full 2D equation ~exp(−i∫ky dy). Let us define an arbitrary 
reference wavenumber, k0, and introduce a normalised wavenumber k=ky/k0, together with 
Ω=ω/ω*e, where ω*e=k0ρscs/Ln. In fact, it is convenient to choose k0ρs=1. Eq (7) then becomes 
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We have introduced the new parameter η=(1+ηi)/τ, which contains the sinusoidal y-
dependence: 
 ( )Kyi cos1/)1( 0 εητηη +=+=   

Figure 2: (a) Amplitude of potential fluctuations for ITG mode in the x−y plane, with the island 
separatrix marked in white; (b) frequency spectrum for this mode as a function of x. 
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The advantage of the model Eq (8) is that it has an analytic solution, and yields a cubic 
equation for k for the eigenvalue condition. Transforming this eigenvalue equation back to 
real space, and introducing a dimensionless variable, ξ=Ky, yields:  
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where ρ*=Kρs<<1. The sign is chosen to maximise the growth rate. We can make analytic 
progress by adopting the WKB procedure of [1] (as decribed above). Before we consider that, 
let us first solve Eq (9) numerically. Figure 3 shows three forms of solution for ϕ~ , with 
periodic boundary conditions )(~)(~ πξϕξϕ 2+= . In the first, we have chosen a mode with 
low kyρs=0.02 with relatively few nodes in the periodic domain. The mode is similar in 
structure to the standard sheared slab mode, with only a slight modulation of the amplitude. 
The second solution is more interesting, with a higher value of kyρs=0.14. Two important 
points are: (1) the mode is now localised in ξ (or y) and (2) it is not localised about the 
position of maximum η. Finally, as we proceed to still higher kyρs=0.18 we find that the mode 
again becomes more extended in nature. As we increase kyρs still further, the mode again 
becomes slab-like in nature, with a relatively weak modulation in the amplitude. 

To understand the intermediate, localised regime, let us develop an analytic WKB solution to 
Eq (9) in the limit kyρs~1 and ρ*<<1. Recalling k=kyρs, we write a solution to Eq (9) in the 
form ( )∫−= ξρξϕ f)/kdiexp(~

*  and expand in ρ*: f=f0+ρ*f1+…; Ω=Ω0+ρ*
2δΩ+.... We shall 

find that this ordering is valid provided the mode maximum is not shifted too far from the 
point at which Ω0(ξ) is maximum. To leading order we find: 
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yielding an expression for Ω0(k,ξ). The next order equation yields: 
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As F=0 from Eq (10), clearly we must have Fk=0, and this equation combined with Eq (10) 
determines both Ω0 and k. Indeed, the condition Fk=0 is equivalent to ∂Ω0/∂k=0 that we 
deduced for the general case in ref [1]. We find that k is complex. Proceeding to second order, 
with Fk=0 and F=0, we have: 
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Figure 3: Numerical solution of Eq (9) for three cases, from left to right kyρs=0.02, 
kyρs=0.14, and kyρs=0.18 (ky is the wavenumber of the fine-scale oscillation). The 
dashed curve shows the form of η. Parameters are ρ*=0.002 η0=2, ε=0.5 and σ=0.5. 
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which, in general, is a Mathieu-type of equation because of the periodic nature of Ω0. 
However, the sinusoidal variation of Ω0 may provide a “potential well” and, if this is 
sufficiently deep, localised solutions exist. These confined modes arrange themselves so that 
f0 is localised around a stationary point of Ω0 (eg near the point of maximum instability). In 
particular, Taylor expanding Ω0(ξ) about this point yields the solution: 
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where ξ=ξ0 is the position of maximum growth rate. This solution demonstrates that the 
envelope function is localised on a length scale ~√ρ*, which is intermediate between the fast 
variation scale and the “equilibrium” scale represented by the variation in η. Note, however, 
although f0 is localised around the position of maximum instability, ϕ~  is not. Recalling the 
form of the full solution above Eq (10), we find that ϕ~ is localised around a point ξ=ξ1, where 
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If Im(k) (≡Im(kyρs)) is non-zero, this represents a shift in the point of localisation, away from 
the point of maximum instability, as seen in the numerical solutions of Fig 3. However, the 
numerical solutions also demonstrate that if one considers modes with higher k (>~1) the 
eigenfunction begins to “tunnel” out of the well and is not localised. The theory described 
here shows that as Im(k) increases, the shift in the point of localisation becomes a significant 
fraction of the distance between island X-points. The ordering we assumed then breaks down 
because f0 only varies slowly (i.e. ~√ρ*) compared to the eikonal close to where ξ=ξ0. To treat 
this higher Im(k) regime, we therefore need a more complete analysis of the Mathieu 
equation, which has strong mathematical similarities with the treatment of rotation shear 
effects on drift waves [3]; this is work in progress. 

3. The impact of finite radial diffusion on the polarisation current in magnetic islands 

In the previous section, specifically Eq (5), we found that the density is constant on the 
perturbed flux surfaces of the magnetic island geometry. However, from Eq (6) we see that 
the density gradient is not continuous at the separatrix (χ=1) and this has implications for the 
polarisation current in that vicinity, as noted in [4]. In particular, the discontinuity generates a 
skin current at the separatrix which opposes the contribution to the polarisation current from 
elsewhere. As a result, whether the polarisation current is stabilising or destabilising depends 
on a subtle balance between these two components. Three effects can be identified with the 
“separatrix layer”: (1) finite ion Larmor radius effects are important; (2) the density is no 
longer a flux surface quantity there, and (3) non-linearities involving the component of 
electric field parallel to the magnetic field lines are likely to be important. Only the first point 
has been addressed so far [5]. Here, we extend the theory to retain both the first and second 
effects, and treat the effect of the parallel electric field linearly. This requires us to retain 
cross-field diffusion in the vicinity of the separatrix. 

Assuming that the potential is smoothed on ion Larmor radius length scales, and that the 
region over which diffusion is important is more narrow than the ion Larmor radius, the 
electron response is described by the equation: 
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Figure 4: (a) Electron distribution function near to the separatrix (dashed curve) and far from it 
(full curve). (b) Density profile across the island O-point in the vicinity of the separatrix with 
(full) and without (dashed) diffusion effects. 
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where the integral over velocity space of the Maxwellian FM gives 1. [We neglect the parallel 
electric field in our description of the formalism, but it is retained through an adiabatic term 
in the code.] Neglecting the collisional term in the separatrix layer, a procedure for solving 
this equation is described in [6], employing a Wiener-Hopf formalism. Outside the separatrix 
region we know two things about the distribution function: (1) it is constant on flux surfaces 
and (2) it is a Maxwellian. These provide boundary conditions to the layer solution. To 
impose these boundary conditions, we follow [6] and identify a short-scale radial variable 
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where u=|v||| and note that κ=1 at the separatrix. Taking the limit r→∞, takes us out of the 
separatrix layer to where we must match to the flux surface Maxwellian. Specifically [6], 

 [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

−
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=+=

→∞
8550

8
18550

213
11 .

DL
uKwc.rcflim

/

s
e

r

χπ  (17) 

where the unknown quantity c1 is a function of velocity. A problem is immediately apparent: 
while this is indeed a flux quantity, the presence of u means that it cannot be matched to a 
Maxwellian. To resolve the situation we must introduce an intermediate matching region 
where collisions are important and the full Eq (15) must be solved. We employ an expansion 
where the dominant term is the parallel flow, to derive the solution in the matching region: 
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and Q is a known function of χ involving elliptic integrals. Because we have now defined a 
transport model, this provides a constraint for h(χ) and we cannot use the form given in Eq 
(6). Instead, we derive 
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We solve Eq (18) for g numerically with the boundary condition that g→0 far from the island. 
Equations (17) and (18) can be used to match the forms for fe and its derivatives with respect 
to χ, to provide two equations for the 3 unknown quantities a, c1 and A(v). The final 
constraint results from the condition that the integral of A over velocity space must be zero (as 
n(χ) =∫fed3v). A numerical solution in the separatrix layer using the formalism of [6], together 
with the above matching conditions, provides the electron distribution function. The result is 
shown as a function of v|| in Fig 4a, which clearly illustrates the non-Maxwellian nature near 
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the island separatrix at χ=1+δ (δ<<1). Integrating this over velocity space provides the 
electron density which is smoothed through the separatrix layer (Fig 4b). One consequence of 
the diffusion is that the density is no longer a flux surface quantity in the vicinity of the island 
separatrix. This is illustrated by the colour contour plot of Fig 5. 

The ultimate aim of this work is to calculate the impact of the ion polarisation current on the 
evolution of tearing modes. This requires a calculation of the electrostatic potential, Φ . To 
derive this, we require an expression for the ion response to Φ , which is evaluated using the 
ion gyrokinetic equation, retaining full FLR effects (recall that the separatrix layer where 
transport is important is assumed to be more narrow than the ion Larmor radius). Quasi-
neutrality then yields a solution for Φ  (see Fig 5(b)). Although the procedure is a little more 
complicated by the presence of the separatrix layer, the polarisation current can then be 
derived from Φ . This is work in progress.  

4. Summary 

In this paper we have described two pieces of work related to the interaction between 
transport and the reconnection process. In the first, we showed how a tearing mode island can 
substantially affect both the structure and growth rates of the linear ITG mode, suggesting 
that turbulent transport processes are significantly modified in the vicinity of a magnetic 
island. In the second study, we described how cross-field diffusion is important close to the 
island separatrix, where it resolves a discontinuity in the density gradient. The forms for the 
density and potential have been evaluated, consistent with the constraint of quasi-neutrality. 
These are necessary ingredients in a complete calculation of the impact of ion polarisation 
current on tearing mode evolution, which we are working towards. 
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Figure 5: 2-D colour contour plots of the density (a) and potential (b), showing that 
neither are flux surface quantities in the separatrix layer. 
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