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abstract. We investigate the effect of drift kinetic damping on theistge wall mode (RWM), due
to the mode resonance with magnetic precession drifts abdiance motion of bulk plasma thermal
particles. A self-consistent toroidal drift kinetic modseldeveloped and incorporated into the MHD
code MARS-F [Y.Q. Liu.et al, Phys. Plasmag, 3681 (2000)]. The new code (MARS-K) is used to
study the RWM stability in ITER steady state scenarios, anthiddel the resonant field amplification
(RFA) for JET plasmas. The self-consistent simulationglistea parameter regime where the RWM
in ITER is fully stabilised by the drift kinetic effects conmed with the toroidal plasma flow. A
wider stable parameter space is predicted by the pertugbapproach based on the ideal kink mode
eigenfunction. The difference is attributed to the modifaaof the RWM eigenfunction by the kinetic
effects. Applying the MHD-kinetic hybrid code MARS-K to JElasmas leads to the identification of
possible instabilities responsible for the observed RH&\w&Er beta.

1. Introduction

Advanced tokamak scenarios, including those foreseeMoR] aim at simultaneously maximising the
plasma pressure and operating in steady state. This reghaeall slowly evolving macroscopic MHD
instabilities be stable. It is well known that the resistivall mode (RWM), which is a global kink-like,
non-axisymmetric instability, with growth rates reducedtbe surrounding conducting wall(s), poses
the limit to the steady state operation of advanced tokamBksrefore, it is critical to ensure that this
mode stays stable when the plasma pressure exceeds thaddeall beta limit.

Two approaches to stabilise the mode have been under esdeingestigation during recent years,
namely active control and rotational stabilisation of thed®s, with kinetic damping effects being in-
volved. The physics of rotational (or kinetic) stabiligatiof the RWM remains unresolved, especially
in view of the new experimental evidence from DIII-D [1, 2]dadT-60U [3], where balanced neutral
beam injection produces RWM stable plasmas with very sloaidal flow. Understanding the damp-
ing physics of the RWM is of significant importance not only pwedicting the critical rotation speed
for ITER plasmas, but also for understanding other relategsios effects, such as the resonant field
amplification (RFA), and plasma momentum damping (one ofleenentum damping mechanisms,
the neoclassical toroidal viscous damping, depends on RFA)

In this work, we develop a full toroidal drift kinetic modadifthe RWM, and apply this model to predict
the RWM stability in ITER advanced scenarios [4], as wellasibdel the RFA plasma response in
JET plasmas. This model is based on drift kinetic resonaaoepthg of the mode at relatively low

mode frequencies in the plasma frame [5, 6]. In contrast R#fs. [7, 8], we include the kinetic terms

self-consistently in the MHD equations, which allows us eanpute the kinetic energy perturbation
using the RWM eigenfunction modified by drift kinetic effectn the perturbative approach, the kinetic
energy is normally evaluated with eigenfunctions comptitethe ideal kink mode without conducting

walls. A significant feature of the new model, compared witlh previous semi-kinetic model [9, 10,

11], is the full toroidal geometry that we adopt in evalugtthe kinetic integrals.

2. Kinetic formulation and benchmarking
We consider the single fluid MHD description of plasmas wittoidal flow. The core equations,
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where the kinetic terms are involved, are written in the Bateframe

(y+inQ)E = v+ (£-0Q)Ry, (1)
p(Y+inQV = —0-p+jxB+IxQ—p[20Z xv+(v-0Q)Ry, 2)
(y+inQ)Q = Ox(vxB)+(Q-0Q)Ry (3)
(y+inQ)p = -—v-0OP, 4)
j = OxQ, (5)
p = pl+pbb+p,(1-bb), (6)

where the variable§,v,Q,j,p represent the plasma displacement, perturbed velocitgnate field,
current, and pressure tensor, respectivelys the unperturbed plasma densipthe eigenvaluen the
toroidal mode number, ard the plasma rotation frequency along the toroidal aiqgl€he equilibrium
field, current, and pressure are denotedby, P, respectivelyR s the plasma major radiug, the unit
vector in the vertical directiorl, the unit tensor.

The kinetic terms enter into the MHD equations via the pesddrkinetic pressure tensors shown in
Eqg. (6), wherep is the scalar fluid pressure perturbation, gnd¢ ), p.(§.) are the parallel and
perpendicular components of the kinetic pressure pertiors respectively and = B/B,B = |B|.
The full pressure tensqr is self-consistently included into the MHD formulation \&guation (2).

The perturbed kinetic pressures are calculated from
e . 1
pHe*"*”'““’: Z/derﬁle, p e wtine — Z/dFEMVile, (7)
el el

where an exp-iwt + ing)-dependence is explicitly assumed for the perturbatiotth e mode fre-

guencyw = iy. The integral is carried out over the particle velocity gpic M is the particle mass,
vj,v. are the parallel and perpendicular (to the equilibrium nedigrfield) velocity of particle local

bounce motionfl is the perturbed distribution function defined in the Lagjian frame and calculated
analytically in [5] and [6].

A derivation resulting in a form op; andp_, suitable for numerical implementation, is presented in
[12]. A key factor in the kinetic pressure terms is the modetiple resonance operator

N_— NN + (Ek — 3/2) it + W] —
mi nwy + [a(M+nq) + 1wy — Vet — W

wherew,n andw,t are the diamagnetic drift frequencies due to the densitytamgherature gradients,
respectively.we is theE x B plasma rotationgy, the particle transit/bounce frequency the bounce-
orbit-averaged toroidal precession drift frequency oftiples, including thewe drift. & = &/T is the
particle kinetic energy normalised by the temperatuey is the effective collisionality.a = 1 for
passing particles, anal = O for trapped particlesm and| are the Fourier harmonic indexes over the
poloidal angle and the particle bounce orbit, respectivEhe latter implies projecting atime dependent
periodic function, associated with the particle perioditibce motion, on a basis function €jxt).

: (8)

Our self-consistent kinetic formulation neglects the pdxed electrostatic potential, the radial excur-
sion of particle trajectory (finite banana width for trappgeatticles), as well as the FLR corrections to
the particle orbit. These effects normally are not impadrfanthe RWM. Some of them are crucial to
study the kinetic effects on other MHD modes, such as theriatkink mode. Although the formu-
lation is presented for thermal particles, for which a Maktiae distribution function over the particle
energy is assumed, it is relatively easy to extend it to mejdor instance, a fast ions contribution or
anisotropic distribution functions.

Different from the self-consistent kinetic approach dismt above, a perturbative approach has been
implemented in several codes for studying the kinetic ¢ffec the RWM [7, 8]. In [8], the MHD sta-
bility code MISHKA [13] is coupled to the particle orbit-folwving code HAGIS [14]. The perturbative
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approach normally uses the eigenfunction of the ideal kioklen computed by an ideal MHD code, as
the input to further compute the kinetic ene®@#. The stability of the RWM is then determined by a
dispersion relation derived from the kinetic MHD energyngiple [15]

yr*N_é\Nof,Jré\/\,@
W — 6\/\4)_1_6\/\4(7

wheredW,, anddW, are the fluid potential energy without and with a conductirglwespectively.
The fluid energy includes both the plasma and the vacuumibatians. The normalisation factat,

is related to the wall eddy current decay time. In a cylinarigeometryr;, = Ty(1—b~2™)/|m|, with

b being the minor radius of the wall, ang defined as the longest eddy current decay time of the wall.

(9)

Both perturbative and self-consistent approaches ariseglih the kinetic-MHD code MARS-K [12].

Figure 1 compares the growth rates of the 1 RWM )15 | |
computed by MARS-K and HAGIS, following the per — r------------------ — MARS-K
turbative approach. The no-wall ideal kink eigenfun ' ¢ MISHKA+HAGIS [}
tion is used for computing the kinetic integrals. T}
magnetic precessional drift resonance of trapped tt. . 2r
mal ions and electrons with the mode is included £ .95
calculations by both codes. A test Solov’ev equili “ 19
rium, with aspect ratio of 5 and nearly circular poloid 1.5l
plasma cross section, is considered. In addition, we 18l
sume an equal equilibrium temperature between it ‘ ‘

and electrons, as well as uniform radial profiles for t 10° 10" (o -y, *° ’ 10°
plasma equilibrium density and toroidal rotatios. .

The latter assumption is equivalent to a finite real mcﬁg'l' Comparison of the & 1 RWM growth
frequencyw by neglecting the effect of rotation on thiates computed by MARS-K and HAGIS, fol-

ideal kink mode. The dashed line in the figure ind?—wmg a perturbative inclusion of the preces-

cates the growth rate of the fluid RWM without kinetﬁ:Ional drit resonance damplng from trappgd
effects and with no plasma rotation. For this speci'i’lrlem_]al part|c_les. A Solov_ev equilibrium is
equilibrium, the drift kinetic resonances do not provi&é)nydered \_N'th aspect ratio of 5 gnd nearly
a significant damping on the mode. Good agreemgmgl_ar_polmdal plasma cross section. Equal
between MARS-K and HAGIS is obtained. Equalﬁﬂu'“p”um temperaturg for ions and eleg-
good agreement is achieved under other assumpt%%s 's assumed. Uniform plasma density

(e.g. with ion contribution alone) or for other equilibriaf’?mI rotation profiles are used.

Since the HAGIS code performs a full particle guiding cermtrigit integration for the kinetic integrals,
the agreement between two codes indicates that neglece gfdtiicle banana width, an assumption
made in the MARS-K formulation, is reasonable for such a leggfiency mode as the RWM. We
point out that, although the benchmark is made on the pextinebapproach, it does test the major part
of the self-consistent procedure, which relies on the sametik integrals as the perturbative approach.

3. Kinetic effects on RWM stability in ITER

We apply MARS-K to investigate the drift kinetic effects dretstability of the RWM for ITER steady
state plasmas from Scenario-4 [4]. This scenario has ayhigiithped plasma with weak negative
magnetic shear at the plasma core. The target plasma, whiolrginally unstable to the= 1 ideal
external kink mode without a conducting wall, is designegdrmduce 340 MW fusion power = 5.
We scale the plasma pressure up to the ideal-wall (inneruractessel) beta limit, while keeping the
total plasma current at the design value of 9MA. For the sékeimerical accuracy, we smooth slightly
the plasma boundary close to the X-point, without a significaodification of the stability limits. (The
no-wall By limit is shifted from 2.45 to 2.33, and the ideal-wall limibim 3.65 to 3.62 by smoothing,
according to the MARS-F calculations.) Following the cami@n, we define an equilibrium pressure
scaling factorCg = (Bn — R W) /(Bigeal-wal _ gro-wall) " with Cg > 0 applying above the no-wall
limit. All the results reported in this Section are obtairfedCg > 0.

2.05¢
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Figure 2 shows the fluid potential energy of the ideal kink snfalith or without a perfectly conducting
wall with the ITER inner wall shape) vers@, together with the drift kinetic energy (both real and
imaginary parts) computed by MARS-K following the pertuia approach. The kinetic energy comes
from the precessional drift resonances of the RWM with tetpfihermal ions and electrons (the effect
of bounce resonances not being included in this calculatisihthe energy is normalised by the plasma
inertia, computed using only the displacement perpendida the equilibrium magnetic surfaces, of
the no-wall ideal kink mode. The ion and electron tempeesiare taken equal, which is a reasonable
assumption for ITER. The growth rate of the fluid RW is used as the complex mode frequency
w = iy; in the kinetic integration. We keep the plasma rotation pedads predicted by the ASTRA
simulation [4], but vary the rotation amplitude over a widege. Figure 2 shows an example for a
very slow plasma rotation, with the central rotation freqeyeat 102 of the Alfvén frequency. The
precessional drift resonance is expected to provide theirdorhdamping at this rotation frequency.
The eigenfunction of the no-wall ideal kink mode is used ialeating the kinetic integrals. We notice
a rather large and positive real part of the kinetic energyettively smallCg, indicating a strong
stabilisation of the mode.

The fluid and kinetic energy perturbations shown in Fig.2used to estimate the growth rates of the
kinetic RWM, following the dispersion relation (9). The v#s are shown in Fig.3. The perturbative
approach predicts a full kinetic stabilisation of the RWNM édarge range ofg (0 < Cg < 0.8) at slow
plasma rotation. We emphasise that the stabilisation caolety from the mode resonance with the
precession drifts of trapped particles.

_3 w=iy,w /w, =1e-3 w=iy,w /w, =1e-3
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FIG.2. The energy perturbations computed B5G.3. The growth rate of the RWM versug,C
MARS-K, versus the equilibrium pressure scalingnder the fluid descriptionyf) is compared with
factor G for the ITER steady state plasma. Plothat of the kinetic RWM following the perturba-
ted are the fluid potential energy of the ideal kintive approachyi). Both the growth/damping rate
mode, together with the perturbatively computehd the real frequency of the kinetic RWM are
kinetic energy from precessional drift resonancgdotted, for the same ITER plasma as in FigyR.

of the RWM with trapped thermal particles. is evaluated using formula (9).

For the ITER plasma with relatively slow toroidal rotati@ddition of the kinetic contribution from the
mode resonance with particle bounce motion does not mowjfyficantly the pictures shown by Fig.2
and 3. As an example, figure 4 compares the MARS-K computedi&ianergy from precessional drift
resonance alone, with that from both precessional and leotesonances. The perturbative approach
is followed for an ITER plasma wit@z = 0.5. The plasma central rotation frequency varies from 2
10 “%wa to 2x 10-2wa. Figure 5 compares the growth rate of the RWM under the sameitions. The
contribution of the bounce resonance damping becomedevigitly for the central rotation frequency
wy larger than 5¢< 10-3wa. This contribution almost vanishes fap < 10 3wa. The predicted plasma
central rotation is less than 20 for ITER advanced Scenario-4 [4]. Assuming the rotatiorfifg@s
predicted for the same ITER plasma, the rotation frequehtyeay = 3 surface is less thanZb%wa.
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(Theq = 2 surface is absent for this ITER plasma.) The calculaticulte show that, at the rotation
speed predicted for ITER advanced plasmas, the particledsoresonance damping still plays a minor
role. We also notice that the real part of the kinetic enetgyspositive (i.e. stabilising) and increases
with decreasing rotation frequency, leading to a strong esgppression at very slow rotation.

Q):iy',cho.S Lo:iyf,CBIO.S
0.025 T 0.1
—=— Re,Precession
- W -|m,Precession or S
0.02} ——Re,Prec.+Bounce || | = L m
=4 -1m,Prec.+Bounce -01 RN ‘,"
“m.
-0.2 BRI o
0.015 R R
« . 303 * L8
% & Y /0t
0.01} 04 -
05 —&— Re,Precession
0.005r -0.61 = B =|m,Precession
—4—Re,Prec.+Bounce
—— -0.7 1
ol "-.:-_-_.' ] -4 -Im,Prec.+Bounce
2 ) ) -08— 3 >
10 10 / 10 10 10 y 10
wo (,OA 0)0 wA

FIG.4. Comparison of the kinetic energy pertu1G.5. Comparison of the eigenvalue of the ki-
bations from precessional drift resonance alonegtic RWM, affected by the precessional drift
with that from both precessional and bounceesonance alone, with that by both precessional
resonances. The perturbative approach is faknd bounce resonances. The perturbative ap-
lowed for an ITER plasma withdC= 0.5. The proach is followed for the same ITER plasma as
plasma central rotation frequency varies frorm Fig.4. The plasma central rotation frequency
2 x 10 %wp t0 2 x 10 2. varies from2 x 10 %wa t0 2 x 10~ 2wa.

Figures 6 and 7 compare the 2D plots of the real part of thetikif®@VM eigenvalue, obtained from
perturbative and self-consistent approaches respectivéd vary both the plasma pressure and toroidal
rotation speed. Due to the different ways of obtaining theleneigenvalue, the growth/damping is
normalised differently between the perturbative and thiecsmsistent approaches. In the former, the
eigenvalue is estimated using the dispersion relationABgre a normalisation factag, is introduced.
Strictly speaking, the perturbative approach does notrassany value for the wall time, because the
ITER wall resistivity is never involved in the calculationIhe self-consistent approach does solve
the MHD equations together with the eddy current equati@ngte resistive walls, hence the wall
time Ty, is directly involved. However, at a large enough wall time.(ifor very highly conducting
walls), the plasma inertia becomes negligible, and the ngpderth rate is mainly determined by the
wall resistivity, hence the normalised growth rat, is almost independent afy. (In other words,
the MARS-K computed is inversely proportional tay.) For the ITER equilibrium wittCg = 0.63,
the plasma inertia becomes negligible already,ativo orders of magnitude below the true wall time,
which is about & x 10°1a. For the self-consistent calculations shown in Fig.7, weosle a wall time
Tw = 6.2 x 10%1,, to avoid computing extremely small eigenvalues (in Aifunits), thus to improve
the numerical accuracy. This brings a slight variation te ttue growth rate of the kinetic RWM,
without modifying the qualitative observations and cosans made in Fig.7.

Both perturbative and self-consistent approaches pradigt stabilisation of the mode at low pressure
(Cg < 0.4) and very slow toroidal rotatiorugp/wa < 2 x 1073), as indicated by the black dots in the
figures. However, the perturbative kinetic approach ptediall stabilisation of the mode in a wider
range of theCg — wxy domain. Using the fluid RWM eigenfunction, instead of an ideak, in the
perturbative calculations alters figure 6 only slightly.m8ar observations have been made in both
analytical calculations [16] and numerical tests for othlaisma equilibria [12]. The difference in the
predicted results has been explained partially by the kimabdification of the eigenmode structure,
and partially by the nonlinear coupling of the RWM eigenealtia the drift kinetic integrals. For a
plasma close to the ideal-wall kink stability limit and walrotation speed close to the predicted value
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for ITER, only partial stabilisation of the RWM is obtaineg both approaches.

A similar conclusion is reached in [7] for an ITER like plasm@'he marginally stable ideal kink
mode eigenfunctions are used in the perturbative calomstmade in [7].) Recent perturbative kinetic
simulations for JET plasmas [8] and self-consistent kinetimputations for DIII-D plasmas [17] also
confirm the partial stabilisation of the RWM with drift kineteffects. However, recent experimental
results in DIII-D point to a complete stabilisation of the RV the linear regime and in the absence of
error fields. The latter two conditions, meaning the absefidhe RWM coupling to other modes and
to the magnetic braking, are assumptions implicitly madallithe above mentioned numerical calcu-
lations. In the presence of low level error fields, experitaato observe a finite, but very small critical
rotation speed at about 0.384 at theq = 2 surface [1, 2]. The present kinetic theory offers a close,
but not full explanation to the experimental observatiohdditional damping physics, such as the one
derived from the nonlinear reactive closure in the advarited theory [18], may be considered.
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FIG.6. Growth/damping rate of the RWM foFIG.7. Growth/damping rate of the RWM for
ITER advanced tokamak plasmas, predicted pyER advanced tokamak plasmas, predicted by
the perturbative kinetic calculations. The precesne self-consistent kinetic calculations. The pre-
sional resonance damping is included. The blagiessional resonance damping is included. The
dots indicate a stable RWM. black dots indicate a stable RWM.

4. Kinetic effectson RFA in JET
Figure 8 shows the shapes of the plasma bound s

and the JET wall on a poloidal plane. The radii
and poloidal location of the error field correction coil
(EFCC) and the pick-up coils (close to the wall) are ir |
dicated by squares. In the simulation, we allow an in_, I

—N

= 9

nite number of saddle coils along the toroidal angtd ~ °
the torus, in order to generate (or measure) ar(iexp
field pattern, with a single toroidal harmomic This is
normally not a strong assumption, since 6 saddle cc -
can generate very well a dominam¢= 1 field. We note | | | | | e |
that JET has 4 EFC coils along the toroidal angle, whi ~ °* = =« ° ¢ 7

makes our assumption marginally applicable. The mgst g Geometry of the coils used to
significant consequence, in comparing the experimefpdel the RFA response of the JET

tal data with the simulation results, is the necessity ﬂfasmas to the EFCC generated external
mapping out the equivalent= 1 contribution from the magnetic fields.

experimental total coil current.

The plasma equilibrium is reconstructed from the JET sh@0®0 The equilibrium current density
does not vanish at the plasma edge, leading to an unstablé peeling mode as the edgevalue
approaches integer numbers. A toroidal rotation profilpjdgl for the JET plasmas from the RWM
experiments, is considered.
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Figure 9 plots the measured RFA amplitude for two similar 3Bd@ts 70199 and 70200. The RFA here
is defined as the plasma response, measured by the pickia@@btoroidally shifted from the EFCC
current, and normalised by the direct vacuum pick-up fielthemabsence of the plasma. For the JET
coil configuration, this quantity measures well the plasesponse to the external field. Two peaks
occur atfy values about 2.3 and 2.0, respectively, which are conditieleelow the estimated no-wall
beta limits (about 2.9 and 2.5 respectively). It is unlikéhat these two peaks contain a dominant
contribution from the response of stable RWM. Besides, expmtal evidence suggests a correlation
between these low frequency RFA signals and the ELM (edg#i$ed mode) free period prior to the
first ELM [19].
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FIG.9. The RFA amplitude measured in two sinfHG.10. The computed RFA amplitude verfys
ilar JET shots 70199 and 70200, plotted again&br a series of JET equilibria reconstructed from
the normalised plasma pressure. The two peasisot 70200. Simulations performed with either a
occur during the ELM (edge localised modejtrong parallel sound wave damping model (SD),
events and at beta values considerably below the a toroidal kinetic damping (KD). Static or
no-wall limits. standing wave EFCC currents are considered.

We explain the two RFA peaks, shown in Fig.9, by the respohseagginally stablen = 1 ideal peel-
ing modes. Figure 10 shows the computed RFA amplitude usiAg&$tK, versus the peeling mode
stability paramete\, which measures proximity of the edgevalue to an integer number. For the
JET equilibria considered herg, is close to 6, hencA = g, — 6. In the simulation, we vary the to-
tal plasma current slightly to scap, keeping a constant lo@y = 1.0. The equilibrium profiles are
also fixed. This allows us to compute the RFA response ohthel peeling mode, which is stable
as/A exceeds 0. We expect that the contribution of the stable RWhhé RFA is small at this low
Bn value. The calculations are performed with two differeninggng models in the MARS-K code,
namely the parallel sound wave damping [15], and the dnifeic damping involving the precessional
drift resonances of trapped thermal particles. Both sttt standing wave (with a frequency equiv-
alent to 12 x 10~%wa) EFCC currents are assumed. The computed RFA amplitudelyaagree with
the experimental measurements shown in Fig.9, with thexgést response occurring&t= 0, corre-
sponding to a marginally stable peeling mode. The RFA respaifithe peeling mode is not sensitive
to the damping models, in contrary to the RWM, whose stghdlitd response is significantly affected
by the mode resonance with plasma particles or waves. We pairthat it is difficult to plot the com-
puted RFA together with experimental data, due to the faatt flor a givenBy, the value ofA, which
controls the stability of the peeling mode, depends on tkeipe details of the equilibrium, especially
the current profile at the plasma edge. We also point out tee¢xperimental RFA response, measured
near the no-wall beta limit for the ideal external kink moegominantly caused by the stable RWM.
This is modelled in detail in Ref. [20].

5. Conclusions
A full toroidal drift kinetic damping model is self-consgsitly incorporated into the single fluid linear
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MHD formulation, via an anisotropic pressure tensor. Tlpigraach allows a self-consistent modifica-
tion of the eigenmode structure and eigenvalue due to kiedfiects. Within the approximations made
in this model, it provides a useful tool to study the dampihggics of the unstable RWM, as well as
the dynamics of a stable RWM.

For ITER steady state advanced scenarios, the self-censlghetic model predicts a full stabilisation
of the RWM at very slow plasma rotation (less than 0.2% of tifgé&h speed at the plasma centre) and
moderately high plasma pressur€; ( 0.4). More optimistic results are obtained by the perturteativ
approach, where the eigenfunction of ideal kink mode is useelvaluate the kinetic integrals, and
an approximate dispersion relation is applegosteriorifor estimating the mode eigenvalue. For a
plasma toroidal rotation speed up to the predicted valudTBR, the kinetic damping of the RWM
is mainly provided by the precessional drift resonancesagied thermal particles. In this work, we
did not include the kinetic contribution from fast partisleThe effect of the plasma collisionality is
neglected. A comprehensive prediction of the RWM stability TER may require including all these
effects, as well as considering even other damping meamanis

We apply the drift kinetic damping model to the resonant fagtaplification in JET plasmas. The RFA
response, observed in JET experiments at low plasma pess@oelow the no-wall beta limit for an
ideal kink), is recovered in simulations, and explainedh®yresponse of either a marginally stable, low
nideal peeling mode, and/or the response of an intrinsicaiple RWM, whose dynamics is affected
by the damping models in combination with the plasma rotatio
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