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Abstract. Eigen-mode analysis of ideal magnetohydrodynamic (MHD) systems with flows is
performed. It is shown that energy of stable oscillatory modes (waves) can be both positive
and negative. Negative energy waves always correspond to non-symmetric modes which are
nonuniform along the direction of the flow. Coupling of negative and positive energy waves
is shown to be a universal mechanism of non-symmetric MHD instabilities in flowing media.
To study stability of non-symmetric modes, a new variational approach is developed based on
Lyapunov theory. This approach provides sufficient and (under some assumptions) necessary
stability condition.

1. Introduction

Stability study of rotating plasmas is of high current interest in many applied and fun-
damental problems. Rotation is a common phenomenon in modern fusion experimental
devices (such as tokamaks) where it is believed to improve the overall plasma confinement
by stabilizing kink and resistive wall modes and suppressing turbulence [1]. At the same
time, plasma rotation in the presence of magnetic field may lead to destabilizing effects,
e.g., magnetorotational instability (MRI) which is widely accepted now as a source of
turbulence and angular momentum transport in accretion disks [2].

The behavior of many plasma systems is well described by ideal magnetohydrodynam-
ics (MHD). The majority of stability studies in MHD are related to spectral method –
analysis of eigenvalues of dynamic operator linearized near the equilibrium state. The
methodological difficulty of correct spectral stability analysis is in the necessity of finding
not only the eigenvalues of the linearized system but also the corresponding eigenvectors,
which have to satisfy the particular boundary conditions. Besides, in the case of systems
with plasma flows the linearized operator of dynamics becomes non-Hermitian (non-self-
adjoint), therefore its eigenvalues are generally complex [3]. As a result, the spectral
stability study of such systems constitutes a very challenging mathematical problem and
is often restricted to simple geometries.

Another way to make a judgement about the stability of the equilibrium state is to
use variational methods, e.g., Lyapunov theory. According to Lyapunov stability theorem
the stability of equilibrium state of a dynamical system is guaranteed if there is a Lya-
punov functional – an integral of motion which has a strict local minimum (maximum)
at the equilibrium state. There is no regular way to construct a Lyapunov functional.
For conservative systems (such as ideal MHD) a natural Lyapunov functional candidate
is the total energy of the system. This choice results in the well-known energy principle,
first realized in Ref. [4] for static MHD equilibrium: if the change of the total energy is
positive for any small deviations of a conservative system from the equilibrium state, then
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such equilibrium state is stable. From a practical point of view it is important that in the
case of static equilibrium, energy principle gives both sufficient and necessary conditions
for spectral stability [5].

Contrary to the static case, in the presence of stationary plasma flow the energy principle
gives only the sufficient stability condition, which is normally too restrictive and almost
never can be satisfied [6]. Limited applicability of the energy principle to MHD systems
with flows can be explained by the existence in such systems of negative energy waves
(NEW) – stable oscillatory eigen-modes, excitation of which leads to decrease of total en-
ergy of the system [7]. Different attempts have been made to find a variational approach
which generalizes the energy principle for the systems with flows [6, 8–11], however, this
problem is still far from a complete solution. Approach proposed in the present paper is
an extension of the variational method developed in [11].

The structure of the paper is following. In section 2, we investigate the energy of waves
in MHD system and point out the important role of negative energy waves in instabilities
of plasma flows. In section 3, we suggest a variational approach suitable for stability
study of flowing plasma. Our approach is based on construction of Lyapunov functional
for linearized MHD system, which is usually referred to as formal stability analysis. In
section 4, the potential applications of our approach are discussed.

2. Energy of eigenmodes in MHD

A lot of important physical information can be revealed from the analysis of energy
of eigen-modes in the frame of ideal MHD. To do this, we start from the well-known
linearized dynamic equation for plasma displacement vector ξ,

ρξ̈ + 2ρ(V · ∇)ξ̇ − F[ξ] = 0, (1)

where dot denotes a partial time derivative, ρ and V are stationary values of fluid density
and velocity, respectively. The general form of linearized force operator F[ξ] in ideal MHD
is

F[ξ] = −ρ(V · ∇)2ξ + ρ(ξ · ∇)(V · ∇)V +∇ · (ρξ)(V · ∇)V (2)

− ∇δP +
1

4π
(∇× δB)×B +

1

4π
(∇×B)× δB.

Here, B is equilibrium magnetic field and δB = ∇× (ξ×B) is its perturbation. The per-
turbation of fluid pressure δP can be specified by thermodynamic properties of the system.
For example, if the process is adiabatic with adiabatic index γ then δP = −ξ·∇P−γP∇·ξ.
In the case of incompressible MHD, such equation appears to be excessive, instead one
has to impose the incompressibility condition ∇ · ξ = 0.

A number of formal properties of Eq. (1) can be established. Force operator F[ξ] is
Hermitian (self-adjoint) in the following sense,∫

η · F[ξ] d3r =

∫
ξ · F[η] d3r, (3)

while the second term in Eq. (1) is antisymmetric:∫
ρη · (V · ∇)ξ d3r = −

∫
ρξ · (V · ∇)η d3r. (4)
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Integration in Eqs. (3) and (4) is performed over the fluid volume under the assumption
that displacements at the plasma boundary vanish to avoid consideration of boundary
and vacuum region perturbations.

A normal-mode solutions to Eq. (1) has a form

ξ(r, t) = ξ̂(r)e−iωt. (5)

Then Eq. (1) leads to eigen-value problem

ω2ρξ̂ + 2iωρ(V · ∇)ξ̂ + F[ξ̂] = 0. (6)

Multiplying this equation by complex conjugate ξ̂
∗

and integrating over the fluid volume,
we arrive at quadratic equation for eigen-frequency ω,

Aω2 − 2B ω − C = 0, (7)

where A =
∫
ρ|ξ̂|2 d3r, B = − i

∫
ρξ̂

∗
· (V · ∇)ξ̂ d3r and C = −

∫
ξ̂
∗
· F[ξ̂] d3r are real by

definition. The solution to Eq. (7) is

ω =
B + s

√
B2 + AC

A
, (8)

where either s = 1 or s = −1 for a particular eigen-mode. Therefore, eigen-mode is
unstable only if B2 + AC < 0.

The dynamics described by Eq. (1) provides conservation of energy

E =
1

2

∫ (
ρ|ξ̇|2 − ξ∗ · F[ξ]

)
d3r, (9)

where the displacement ξ is assumed to be complex. Substituting ξ from Eq. (5), we
obtain the energy of the eigen-mode

E =
1

2
(A |ω|2 + C)e2γt, (10)

where γ = Im(ω). Since energy is conserved, E in Eq. (10) cannot depend on time
and must be equal to zero for any unstable eigen-mode with γ 6= 0. Energy of stable
eigen-mode with γ = 0 is given by

E = sω
√
B2 + AC, (11)

and can be either positive (positive energy waves, PEW) or negative (negative energy
waves, NEW). The latter is realized for eigen-modes with −B2/A < C < 0 and sign(B) =
−s. All NEW are non-symmetric modes, i.e., they have spatial dependence along the
equilibrium flow, so B 6= 0. As discussed in Ref [7], there is an interval of equilibrium
parameters at which non-symmetric modes with positive and negative energies can coexist.
When the frequencies of such modes are coincident (resonance condition), the energy can
be transferred from NEW to PEW leading to instability. In fact, such coupling of NEW
and PEW is a universal mechanism of any non-symmetric instability in ideal MHD system
with flow.
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FIG. 1. Dependence of eigen-frequencies on normalized value of angular velocity Ω1/ωA
for (a) axisymmetric modes with m = 0, and (b) non-axisymmetric modes with m = 1.
Solid lines correspond to positive energy waves, dashed lines – to negative energy waves,
dotted lines represent real part of frequency in unstable region. Value of nr denotes radial
wave-number, i.e., number of zeros in radial direction of corresponding eigen-function.

In order to illustrate these results, we calculate the energies and frequencies of eigen-
modes of incompressible conducting fluid rotating in a uniform transverse magnetic field
B = B0ez. The equilibrium velocity profile used in our calculations corresponds to the
electrically driven flow in circular channel and has a form

V = rΩ(r)eϕ, Ω(r) =
Ω1r

2
1

r2
(12)

in cylindrical system of coordinates {r, ϕ, z}. Here, r1 and r2 are inner and outer radii
of the channel (we take r2/r1 = 5), respectively, and Ω1 is the angular velocity at r1. A
detailed stability analysis of such flow has been performed in Ref. [7] and [12], assuming
normal modes in the form ξ(r, t) = ξ(r) exp (−iωt+ imφ+ ikzz).

In Fig. 1 the dependences of frequencies of axisymmetric (m = 0) and non-axisymmetric
modes (m = 1) on the equilibrium parameter Ω1/ωA are shown. In the axisymmetric
case [Fig. 1(a)], only positive energy waves can be excited in the system. The merging
point of two branches in Fig. 1(a) corresponds to Ω1/ωA ≈ 2.0 which is the threshold of
magnetorotational instability for m = 0. The nature of axisymmetric MRI is not related
to the subject of negative energy waves and can be explained by the mechanism similar
to one of Rayleigh-Taylor instability [13].

For m = 1 modes [Fig. 1(b)], both positive and negative energy waves can coexist in
the system when Ω1/ωA > 1. The threshold of instability in this case is Ω1/ωA ≈ 1.7 (it
corresponds to radial mode with nr = 0), when frequencies of NEW and PEW are coinci-
dent, which is in agreement with the above discussion. Energy of symmetric eigen-modes
(modes corresponding to static equilibrium or modes without spatial dependence along
equilibrium flow) is never negative, that is why their stability is successfully investigated
by use of standard energy principle. In a case of non-symmetric modes, the energy prin-
ciple fails if NEW can be excited in the system, therefore modified approach should be
used. Such approach is developed below.
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3. Lyapunov stability criterion for plasma flows

As shown in Ref. [11], the linearized system (1) has an infinite set of exact invariants:

En =
1

2

∫ (
ρ|ξ(n+1)|2 − ξ∗(n) · F[ξ(n)]

)
d3r, (13)

where ξ(n) is the n-th time derivative. Generally, these integrals are independent. E0

corresponds to the energy, integral E1 – to the invariant similar to cross helicity [6,
9]. Higher order invariants (13) have no obvious nonlinear analogues. Using recurrence
relation, which follows immediately from Eq. (1),

ξ(n+2) = −2(V · ∇)ξ(n+1) +
F[ξ(n)]

ρ
, (14)

all integrals (13) can be expressed in terms of initial perturbations ξ̇0 = ξ̇|t=0 and ξ0 =
ξ|t=0. In particular,

E1(ξ̇0, ξ0) =
1

2

∫ (
1

ρ

∣∣∣∣F[ξ0]− 2ρ(V · ∇)ξ̇0

∣∣∣∣2 − ξ̇
∗
0 · F[ξ̇0]

)
d3r. (15)

Following Arnold’s approach [14], we incorporate integrals of motion (13) into a Lyapunov
functional candidate by means of Lagrange multipliers λn:

U(ξ̇0, ξ0) =
N∑
n=0

λnEn(ξ̇0, ξ0). (16)

Theorem 1 gives sufficient condition for formal stability of system described by Eq. (1).

Theorem 1 If there exist such real numbers λn and integer N ∈ [0,∞] that the form
(16) is positively definite for all ξ̇0 and ξ0, then the form (16) is a Lyapunov functional,
and the equilibrium state is formally (spectrally) stable.

Theorem 1 under certain assumptions also provides necessary condition for spectral stabil-
ity, i.e., if the system is stable then there are such λn which make functional U non-negative
for any perturbations. To demonstrate this, we prove the following theorem first.

Theorem 2 Energy of oscillatory eigen-modes in linearized ideal MHD is additive.

Proof. Consider a superposition of two eigen-modes with different real eigen-frequencies,
ω1 6= ω2,

ξ = c1ξ1 + c2ξ2. (17)

The total energy of this perturbation is

E =
1

2

∫
(ρ|ξ̇|2 − ξ∗ · F[ξ]) d3r = |c1|2E(ξ1) + |c2|2E(ξ2) (18)

+
1

2
c1c

∗
2

∫
(ω1ω2ρξ̂1 · ξ̂

∗
2 − ξ̂1 · F[ξ̂

∗
2]) +

1

2
c∗1c2

∫
(ω1ω2ρξ̂

∗
1 · ξ̂2 − ξ̂

∗
1 · F[ξ̂2]).

The last two integrals in this equation are zero. Indeed, consider eigen-value problems for
eigen-modes ξ1 and ξ2:

ω2
1ρξ̂1 + 2iω1ρ(V · ∇)ξ̂1 + F[ξ̂1] = 0, (19)

ω2
2ρξ̂

∗
2 − 2iω2ρ(V · ∇)ξ̂

∗
2 + F[ξ̂

∗
2] = 0, (20)
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Multiplying the first equation by ω2ξ̂
∗
2 and the second one by −ω1ξ̂1, integrating them

over the plasma volume and summing them up, we obtain:

(ω1 − ω2)

∫
(ω1ω2ρξ̂1 · ξ̂

∗
2 − ξ̂1 · F[ξ̂

∗
2]) = 0. (21)

If ω1 6= ω2 then integral in Eq. (21) is zero, q.e.d. A similar statement is valid for any of
the integrals given by Eq. (13).

Now we consider a stable system (all eigen-frequencies ωj are real). The general solu-
tion to Eq. (1) can be written as

ξ =
∑
j

cjξj. (22)

For any given initial conditions (i.e. ξ|t=0 = ξ0, ξ̇|t=0 = ξ̇0), coefficients cj are uniquely
specified. According to Theorem 2, integrals in the form of Eq. (13) can be expressed as

En(ξ) =
∑
j

ω2n
j |cj|2E(ξj), (23)

where E(ξj) is the energy of the j-th eigen-mode. Substituting Eq. (23) into Lyapunov
functional candidate (16), we obtain:

U(ξ) =
N∑
n=0

λn
∑
j

ω2n
j |cj|2E(ξj) =

∑
j

|cj|2E(ξj)
N∑
n=0

ω2n
j λn. (24)

In order to make this form positively definite for all initial perturbations, we have to
ensure that it is positive for every eigen-mode independently. This results in conditions

λ0 + ω2
kλ1 + ω4

kλ2 + . . . > 0 for every PEW, (25)

λ0 + ω2
l λ1 + ω4

l λ2 + . . . < 0 for every NEW. (26)

If these inequalities are satisfied simultaneously by some choice of {λn} then Theorem
1 also gives necessary stability condition. We have to emphasize again that Eq. (21) is
valid for oscillatory modes only. For unstable or decaying modes functional U given by
Eq. (16) cannot be reduced to the form (24) and has no definite sign for any choice of {λn}.

It should be noted here that the form (24) cannot be made strictly positively definite
if the energy of some eigen-mode is zero, i.e., E(ξj) = 0 for some j. As follows from
Eq. (11), such situation is realized either when ωj = 0 (neutral eigen-mode) or when
B2
j + AjCj = 0 (marginal stability condition). To separate these two possibilities, one

can find the value of potential energy proportional to quantity C from Eq. (7). The trial
function, which minimizes U at the stability threshold, normally corresponds to C 6= 0 for
moving medium (B 6≡ 0), while neutral mode with ω = 0 always provides C = 0. There is
no such difference when B ≡ 0, so the energy principle can be applied [N = 0 in Eq. (16)].

For illustration of the developed method, we study the stability of a cold (pressure P = 0),
constant-density non-magnetized gas rotating around gravitational center with potential
Φ(r). All equilibrium quantities are assumed to depend only on the radius r in the
cylindrical system of coordinates {r, ϕ, z}. The equilibrium velocity is then

V = rΩ(r)eϕ, rΩ2(r) =
∂Φ

∂r
. (27)
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We look for solution to Eq. (1) in the form of a Fourier series, considering perturbations
in the reference frame that rotates around z-axis with equilibrium angular velocity Ω(r),

ξ(t, r) =
∑
m,kz

ξm,kz
(t, r) exp{im(ϕ− Ω(r)t) + ikzz}.

Eq. (1) yields the equation for the dynamics of each Fourier mode (we omit subscripts)

ξ̈ + 2ΩÂ ξ̇ − B̂ ξ = 0, (28)

where operators Â and B̂ are matrices:

Â =

 0 −1 0
1 0 0
0 0 0

 , B̂ =

 −r∂(Ω2)/∂r 0 0
0 0 0
0 0 0

 . (29)

The stability condition for Eq. (28) is easily established by the spectral method. Taking
ξ ∼ exp(iωt), we arrive at the well-known Rayleigh criterion (necessary and sufficient
condition for spectral stability)

4Ω2 + r
∂Ω2

∂r
≥ 0. (30)

Now we apply to Eq. (28) our variational method. Note that in this case all invariants
in Eq. (13) are local, i.e., corresponding integrands are conserved for every spatial point
(r, z), so the first two invariants E0 and E1 are

E0 =
1

2

(
|ξ̇|2 − ξ∗T B̂ξ

)
=

1

2

(
|ξ̇r|2 + |ξ̇ϕ|2 + |ξ̇z|2 + r

∂Ω2

∂r
|ξr|2

)
, (31)

E1 =
1

2

(
|B̂ξ − 2ΩÂξ̇|2 − ξ̇

∗T
B̂ξ̇

)
=

1

2

(∣∣∣∣r∂Ω2

∂r
ξr − 2Ωξ̇ϕ

∣∣∣∣2 +

(
4Ω2 + r

∂Ω2

∂r

)
|ξ̇r|2

)
.

If we choose U = E1, we arrive at the spectral stability condition, which is exactly the
Rayleigh criterion (30). The energy principle (U = E0) gives more restrictive sufficient
stability condition: r∂(Ω2)/∂r ≥ 0. This confirms the fruitfulness of the approach.

4. Summary

We have demonstrated the physical difference between instabilities of symmetric modes
(all modes in static equilibria and modes which are uniform along the equilibrium flows)
and non-symmetric modes. Our results show that coupling of waves with positive and
negative energy is a universal mechanism for any non-symmetric MHD instabilities of
flowing plasma.

Energy of symmetric eigen-modes is never negative, so the energy principle can be suc-
cessfully applied to study their stability. To investigate the stability of flowing plasma
with respect to non-symmetric modes, we developed a variational method (Theorem 1)
based on inclusion of a new set of invariants into Lyapunov functional. Under certain as-
sumptions this method can provide both sufficient and necessary conditions for stability.

The method is verified for a simple analytical example; the obtained stability condi-
tion is shown to be both necessary and sufficient. The relative simplicity of the analysis
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in considered example is due to the simple form of dynamic operators, which are repre-
sented as finite dimensional matrices. In more general case, to find the adequate stability
criterion other integrals from the set (13) can be included into analysis.
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