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Abstract: For a tokamak, we consider gyrokinetic quasineutrality limitations when evaluating the axisymmetric
radial electric field; an insight provided by considering the gyrokinetic entropy production restriction on an ion
temperature pedestal like that of ITER; and an improved hybrid gyrokinetic-fluid treatment valid on slowly
evolving transport time scales.

1. Introduction

We consider the limitations of gyrokinetic quasineutrality to evaluate the axisymmetric radial
electric field; a gyrokinetic entropy production restriction on the ITER ion temperature
pedestal and zonal flow behavior in the pedestal; and a hybrid gyrokinetic-fluid treatment
valid on slowly evolving transport time scales.

Standard gyrokinetics incorrectly determines the axisymmetric, long wavelength electrostatic
potential to leading order in gyroradius over major radius as demonstrated by considering a
steady-state theta pinch with a distribution function correct to second order. Similarly, we
argue gyrokinetic quasineutrality often improperly determines the potential in the long
wavelength, axisymmetric limit for a tokamak.

Using canonical angular momentum as the radial variable allows strong gradients to be treated
gyrokinetically. Entropy production is then found to require a physical lowest order banana
regime ion distribution function to be nearly an isothermal Maxwellian with the ion
temperature scale much greater than the poloidal ion gyroradius. Thus, the background ion
temperature profile in ITER cannot have a pedestal like that of a density pedestal having a
poloidal gyroradius width. Weak ion temperature variation with subsonic pedestal flow
requires electrostatically restrained ions and magnetically confined electrons. These features
are expected to result in finite orbit modifications to the zonal flow residual.

Simulating tokamaks on transport time scales requires evolving drift wave turbulence with
axisymmetric neoclassical and zonal flow radial electric field effects retained. However, full
electric field effects are more difficult to keep since they require evaluating the ion
distribution function to higher order in the gyroradius expansion than standard gyrokinetics.
An electrostatic hybrid gyrokinetic-fluid treatment using moments of the full Fokker-Planck
equation removes the need to go to third order in the gyroradius expansion. This hybrid
description evolves potential as well as density, temperatures and flows, and models all
electrostatic turbulence effects with wavelengths much longer than an electron gyroradius.

2. Limitations of the Gyrokinetic Determination of the Radial Electric Field

A new recursive procedure is used to derive the electrostatic gyrokinetic equation for the full
distribution function (a "full f'" description) correct to first order in an expansion of
gyroradius over magnetic field characteristic length [1]. The new, nonlinear gyrokinetic
variables are constructed to higher order than is typically the case by generalizing the linear
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procedure of [2]. The higher order gyrokinetic variables are required for the hybrid
description of section 4. The gyrokinetic procedure employed provides fresh insights into the
limitations of the gyrokinetic quasineutrality equation that in the long wavelength limit must
not determine the axisymmetric electrostatic potential to leading order in the gyroradius over
scale length because of intrinsic ambipolarity [3,4].

The axisymmetric radial electric field in a tokamak is made up of two components that give
rise to ExB drifts comparable to diamagnetic flows and magnetic drifts (this situation is
normally referred to as the drift ordering). The relatively small amplitude, but rapidly radially
varying zonal flow component of the electrostatic potential is generated by the turbulence
associated with ion temperature gradient (ITG) modes, trapped electron modes (TEMs), and
other tokamak instabilities. It is superimposed on a large amplitude component with a slow
global structure on the scale of the minor radius. Gyrokinetic quasineutrality determines the
short wavelength electrostatic potential, but it would violate intrinsic ambipolarity if it
determined a global or steady state, axisymmetric, long wavelength radial electric field
component that impacted the evolution of the turbulence.

In a steady state, axisymmetric tokamak, intrinsic ambipolarity [3,4] requires the heat and
particle fluxes to be independent of electrostatic potential to second order in the expansion in
ion gyroradius ρi divided by the local scale length L. This property is most easily seen to order
ρi/L by considering the drift kinetic equation for the leading correction f1i to the lowest order
Maxwellian ions f0i found by solving
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r v di is the magnetic plus electric drifts, C1ii is the linearized ion-ion collision operator
with C1ii{v||f0} = 0, and   
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B = I(ψ)∇ζ +∇ζ ×∇ψ = Br n  is the tokamak magnetic field with ζ the

toroidal angle and ψ the poloidal flux function. Letting 
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showing the only drive for gi is 

€ 

∂Ti /∂ψ, and giving a vanishing ion particle flux since
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〈n
r 
V i⋅∇ψ〉ψ = 〈 d3v∫ f1i

r v di⋅∇ψ〉ψ = −〈(I /Ωi) d3v∫ v||
2r n ⋅∇f1i〉ψ = 0 , where 

€ 

〈...〉ψ denotes flux surface
average and (1) is employed. A moment procedure for the electron particle flux using C1e{f1e}
= C1ee{f1e} + Cei{f1e} with C1ee the electron-electron operator and  

€ 

Cei{f1e} =

€ 

Lei{f1e − (m/Te)V||iv||f0e} the unlike operator, gives the electron particle flux as
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〈n
r 
V e ⋅ ∇ψ〉ψ = (mcI /e)〈B−1 d3vv||∫ C1e{f1e − (m/Te)V||iv||foe}〉ψ, with Lei the Lorentz operator.

The electron drift  kinetic equation can be written as   
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C1e{ge + (Iv|| /Ωe)(∂f0e /∂ψ) − (m/Te)V||iv||f0e} with 
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ge = f1e − (Iv|| /Ωe)(∂f0e /∂ψ) . The 
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∂Φ/∂ψ
drives in the collision operator cancel, making ge independent of the radial electric field so
that   
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V e ⋅ ∇ψ〉ψ =
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(mcI /e)〈B−1 d3vv||∫ C1e{ge+ (Iv|| /Ωe)(∂f0e /∂ψ) − (m/Te)V||iv||foe}〉ψ  does not
depend on the radial electric field to an order higher since Cii/Cee ~ (m/M)1/2 ~ ρ i/L is
normally assumed, with L the radial scale length.

Alternately, a moment description can be used to further demonstrate that intrinsic
ambipolarity must be satisfied to order 

€ 

ρi2/L
2 since it is then the flux surface average of

conservation of toroidal angular momentum that must give the radial electric field. To order

€ 

ρi2/L
2 the viscosity is diamagnetic (and so collisionless to lowest order) and the radial flux of

toroidal angular momentum may be written in terms of the ion gyroviscosity   

€ 

t 
π ig within small
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up-down asymmetric contributions as [5]   

€ 

〈R2∇ζ⋅
t 
π ig⋅∇ψ〉ψ= 〈(MI/B) d3v∫ v||f1i

r v di⋅∇ψ〉ψ= 0 .
Inserting 

€ 

f1i = gi − (Iv|| /Ωi)(∂f0i /∂ψ) , using   

€ 

〈 d3v∫ f0i(v||/B)2v||
r n ⋅∇(v||/B)〉ψ = 0, and recalling gi

depends only on 

€ 

∂Ti /∂ψ gives a 

€ 

∂Φ/∂ψ  independent result. Hence, the correct neoclassical
radial electric field must be determined from toroidal angular momentum conservation in next
order.

By considering a steady-state θ pinch using a model collision operator, we have explicitly
shown gyrokinetics cannot determine its axisymmetric, long radial wavelength electrostatic
potential to order 

€ 

ρi2/L
2 [1]. In standard gyrokinetic treatments intrinsic ambipolarity is

violated when the ion distribution function is retained to order ρi/L in the guiding center
density and to order 

€ 

ρi2/L
2 in the finite orbit polarization term. However, when fi is kept to

order 

€ 

ρi2/L
2 in both places the radial electric cannot be determined and no inconsistency

arises, as illustrated by the θ pinch case [1].

These results indicate that the gyrokinetic quasineutrality equation is not the most effective
procedure for finding the electrostatic potential if the long wavelength components are to be
properly retained in the analysis. In section 4 we discuss how second order accurate
gyrokinetic variables can be employed [1] in a hybrid gyrokinetic-fluid moment description to
insure third order accuracy in the gyroradius expansion.

3. Gyrokinetics in the Pedestal and Internal Barriers: A new gyrokinetic technique has
been developed and applied to analyzing pedestal and internal transport barrier (ITB) regions
in a tokamak [6]. In contrast to typical gyrokinetic treatments, canonical angular momentum
  

€ 

ψ∗ ≡ ψ− (Mc /e)R2r v ⋅ ∇ζ =ψ+Ωi
−1r v × r n ⋅ ∇ψ− (Iv|| /Ωi)  is taken as the gyrokinetic radial

variable rather than the radial guiding center location   

€ 

Ψ ≡ψ+Ωi
−1r v × r n ⋅ ∇ψ. Such an

approach allows strong radial plasma gradients to be treated, while retaining zonal flow and
neoclassical behavior and the effects of turbulence. The nonlinear gyrokinetic equation
obtained is capable of handling such problems as large poloidal ExB drift and orbit squeezing
effects on zonal flow, collisional zonal flow damping, as well as neoclassical transport in the
pedestal or ITB. This choice of gyrokinetic variables allows the toroidally rotating
Maxwellian solution of the isothermal tokamak limit to be exactly recovered [7].

More importantly, we can prove that a physically acceptable solution for the lowest order ion
distribution function in the banana regime anywhere in a tokamak must be nearly this same
isothermal Maxwellian solution in the sense that the ion temperature variation scale must be
much greater than poloidal ion gyroradius. Consequently, in the banana regime the
background radial ion temperature profile in ITER cannot have a pedestal similar to that of
plasma density or electron temperature if they vary on the scale of a poloidal ion gyroradius.
To understand this insight first recall that the vanishing of the entropy production on a flux
surface,   

€ 

〈 d3v∫ lnf0iC1ii{f0i}〉ψ = 0, requires the lowest order axisymmetric ion distribution
function f0i to be a local Maxwellian, with f0i independent of poloidal angle in the banana
regime. However, in the pedestal or an internal barrier (or on axis), drift departures from flux
surfaces can become comparable to the local scale length (  

€ 

ρpi∇lnn ~ 1 with n the plasma
density) and the entropy production argument has to be modified to account for the loss of
locality due to finite poloidal ion gyroradius 

€ 

ρpi effects requiring an equilibrium to be
established over the entire pedestal (or barrier). Using the new gyrokinetic variables, we find
that entropy production must vanish in the pedestal [6]:

  

€ 

d3rΔV∫ d3v∫ lnf0iC1ii{f0i} = 0, (3)
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where ΔV is the volume of the pedestal (between the top of the pedestal where   

€ 

ρpi∇lnn <<1
and the separatrix) or the internal transport barrier (between inner and outer bounding flux
surfaces having   

€ 

ρpi∇lnn <<1). As a result, f0i must be drifting Maxwellian at most, giving

€ 

C1ii{f0i}= 0. In the banana regime f0i is independent of poloidal angle as well. Consequently,
to make the Vlasov operator vanish f0i = f0i(ψ∗,E,µ), where E = v2/2 + eΦ/M is the total energy
and µ the magnetic moment. It is only possible to make a drifting Maxwellian out of these
variables by ignoring the µ dependence and assuming the drift is nearly a rigid toroidal
rotation of frequency ωi with the ion temperature variation slow compared to the poloidal ion
gyroradius (  

€ 

ρpi∇lnTi <<1,   

€ 

ρpi∇lnω i <<1) as for an isothermal Maxwellian [6,7]:

  

€ 

f0i(ψ∗,E) = n(M/2πTi)3/ 2exp[−M(r v −ω iR2∇ζ)2/2Ti] = η(M/2πTi)3/ 2exp(−ME/Ti − eω iψ∗/cTi) ,
where 

€ 

η = nexp[(eΦ/Ti) + (eω iψ/cTi) − (Mω i2R2/2Ti)] must also be nearly constant
(  

€ 

ρpi∇lnη <<1). Thus, for a density pedestal having a scale length L ~ 

€ 

ρpi, the background ion
temperature profile must have a much larger scale length than the pedestal - a restriction that
will need to be satisfied by the ITER pedestal. As a result, the ion temperature pedestal must
be somewhat broader than the poloidal ion gyroradius variation allowed for the density
pedestal and the peak ion temperature in the core of ITER as set by ballooning-peeling
calculations in the presence of bootstrap current may be reduced.

In addition, for a density scale length of 

€ 

ρpi, lowest order perpendicular momentum balance
gives 

€ 

ω i = −c[dΦ/dψ+ (en)−1d(nTi)/dψ] with 

€ 

cR(en)−1d(nTi)/dψ ~ vi  = ion thermal speed and
Φ(ψ) the axisymmetric electrostatic potential. Consequently, in a subsonic pedestal in the
banana regime it must be that to lowest order the ions are electrostatically confined [6] with

€ 

edΦ/dψ ≈ −(Ti/n)dn /dψ , as observed in the H mode pedestal of Alcator C-Mod [8]. Using
total pressure balance we then see the electrons must be magnetically confined with a mean
flow   

€ 

r 
V e  comparable to the ion thermal speed (  

€ 

r 
V e ~ vi).

The strong localized axisymmetric radial electric field that arises under these circumstances
modifies the collisionless zonal flow residual of Rosenbluth and Hinton [9] due to the strong
poloidal ExB drift and its associated finite orbit effects as well as orbit squeezing [10]. For
example, the axisymmetric radial electric field of the pedestal can be assumed to satisfy

€ 

edΦ0 /dψ = −(Ti/n)dn /dψ . Then the residual associated with the small amplitude, shorter
wavelength, axisymmetric zonal flow potential Φ1 will differ substantially from reference [9].

Retaining the poloidal ExB drift as well as parallel streaming the ion poloidal drift frequency
becomes

  

€ 

˙ θ = [v|| + cIB−1Φ'(ψ)]r n ⋅∇θ . (4)
In the tokamak core, the second term on the right side of (4) is much less than the first one,
whereas in the pedestal these terms are comparable, thereby modifying the poloidal motion of
particles. We remark that the ExB drift,   

€ 

r v E ~ viρi/ρpi, remains much less than the ion thermal
speed as required by our gyrokinetic ordering. However, as sketched in figure 1,   

€ 

r v E  is nearly
parallel to the poloidal plane while   

€ 

v||
r n  is almost perpendicular to it so with a small poloidal

component of 

€ 

v||ρi/ρpi . As a result, these two velocities can compete in the poloidal cross-
section of a tokamak.
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In the conventional core case, a particle is trapped if its 

€ 

v|| is small enough. As equation (4)
suggests, for a particle to be trapped in the pedestal its 

€ 

v|| should be rather close to

€ 

− cIB−1Φ'(ψ). Then, as a trapped particle in the pedestal undergoes its banana motion
projected onto the poloidal cross-section, its parallel velocity oscillates around the value of

€ 

− cIB−1Φ'(ψ) (rather than zero) as illustrated in figure 2. Accordingly, as banana particles play
a key role in neoclassical phenomena such as radial ion heat flux or polarization, the

evaluation of these effects has to be revisited
in the pedestal where it will differ from the
core.

It is interesting to notice that due to
modifications of the trapping condition,
banana particles acquire rather complicated
toroidal behavior. Indeed, toroidal motion is
still dominated by 

€ 

v|| but now it has a bounce
average value of 

€ 

− cIB−1Φ'(ψ). Of course,
even in the conventional case banana
particles are not perfectly confined toroidally
because of toroidal components of the
magnetic drift. However, these toroidal drifts
are much less than vi, while within the
pedestal ordering 

€ 

− cIB−1Φ'(ψ) ~ vi . As a
result, the toroidal orbits of particles trapped
poloidally in the pedestal dramatically differ
from those in the core as shown in figure 2.Figure 1: Projection of the parallel streaming

into the poloidal plane.

Figure 2: Toroidal projections of trapped particle orbits for weak, sub-critical, and above critical ExB
drift.
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4. Gyrokinetic Closure and Radial Electric Field on Transport Time Scales

Simulating electrostatic turbulence in tokamaks on transport time scales requires retaining and
evolving a complete turbulence modified neoclassical transport description, including all the
axisymmetric neoclassical and zonal flow radial electric field effects, as well as the turbulent
transport normally associated with drift instabilities. Full electric field effects and their
evolution are more difficult to retain than density and temperature evolution effects since the
need to satisfy intrinsic ambipolarity in the axisymmetric, long wavelength limit requires
evaluating the ion distribution function to higher order in gyroradius over background scale
length than standard gyrokinetic treatments as already noted earlier. To avoid having to derive
and solve a gyrokinetic equation good to third order in the gyroradius expansion, an alternate
hybrid gyrokinetic-fluid treatment is formulated that employs moments of the full Fokker-
Planck equation to remove the need for a very high order gyrokinetic distribution function.
The description is an extension to gyrokinetics of drift kinetic treatments that yield
expressions for the ion perpendicular viscosity as well as for the electron and ion parallel
viscosities, gyroviscosities, and heat fluxes for arbitrary mean-free path plasmas, in which the
lowest order distribution function is a Maxwellian [11].

An electrostatic hybrid gyrokinetic-fluid treatment using moments of the full Fokker-Planck
equation removes the need to go to higher order. This hybrid description evolves electrostatic
potential, plasma density, ion and electron temperatures, and ion and electron flows using
conservation of charge, number, ion and electron energy, and total and electron momentum,
respectively [12]. All electrostatic effects with wavelengths much longer than an electron
gyroradius are retained so that ion temperature gradient (ITG) and trapped electron mode
(TEM) turbulence and the associated zonal flow as well as all neoclassical behavior are
treated. Closure for the electrons is obtained by solving the electron drift kinetic equation to
find the leading order correction to the Maxwellian electrons f0e needed to evaluate the
parallel electron viscosity (or pressure anisotropy) as well as the momentum and energy
exchange terms with the ions. In addition, the   

€ 

r v v2/2  moment of the exact electron Fokker-
Planck equation is used, along with this first order correction to f0e, to evaluate the electron
heat flux (collisional plus diamagnetic), thereby achieving closure for the electrons. Ion
closure is achieved similarly by solving the ion gyrokinetic equation to leading order in ρi/L.
However, ion closure is somewhat more complicated because the   

€ 

r v r v  as well as the   

€ 

r v v2/2
moment of the ion Fokker-Planck equation must be used to evaluate the ion gyroviscosity and
perpendicular viscosity, along with the ion heat flux. Moreover, to recover the correct results
in the axisymmetric, long wavelength limit, the gyrokinetic variables must be determined to
one order higher than normal [1,6]. Once this is done complete closure is obtained and a
description valid on transport time scales is recovered that properly evolves the electrostatic
potential and flows, as well as density and temperatures.

In this hybrid description distribution functions are only used to evaluate moments needed for
closure and collisional exchange [12] - they are not used to evaluate density, temperature and
flows. The results are given in terms of a few velocity space integrals of the gyrokinetic
distribution function and make possible a hybrid fluid-gyrokinetic description that includes
the neoclassical radial electric field as well as long wavelength turbulence and zonal flow
effects. Moment equations evolve all other quantities such as density, temperatures, flows,
and potential. As a result, either PIC or continuum, lowest order gyrokinetic and drift kinetic
solutions, may be employed, and the kinetic equations need not be solved in conservative
form. In addition, the flux surface average of conservation of toroidal angular momentum
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contains axisymmetric radial electric field terms from both the Reynolds stress and the
collisional perpendicular ion viscosity whose respective coefficients compare as
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˜ n 
n
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with tildes denoting fluctuating quantities, 

€ 

L⊥  the local perpendicular scale length, R the
major radius, and q the safety factor. For 

€ 

˜ n /n ~ e ˜ Φ /Ti ~ 10−2 with 0.1 de-phasing, both
quantities are of order 10-5, for 

€ 

L⊥ ~ q2ρpi and ITER like numbers of B = 5.3 T, Ti = 8 keV, n
= 1019 m-3, and R = 6 m. Consequently, even though momentum relaxation is expected to be
anomalous, the axisymmetric steady state radial electric field may be determined by a
competition between the turbulent Reynolds stress and collisional perpendicular ion viscosity
for some parameters.

5. Discussion

In an axisymmetric, single ion species tokamak, intrinsic ambipolarity requires the
distribution functions, and heat and particle fluxes be independent of electrostatic potential to
leading order in gyroradius. Moreover, a moment description can be used to demonstrate that
intrinsic ambipolarity must be satisfied to second order in gyroradius. We find that standard
gyrokinetics incorrectly determines the axisymmetric, long wavelength electrostatic potential
to leading order in gyroradius over major radius by considering a steady-state theta pinch with
a distribution function correct to second order [1]. A similar problem arises in tokamaks. In
both cases the correct radial electric field is determined from toroidal angular momentum
conservation.

Using canonical angular momentum as the radial variable allows strong gradients to be treated
gyrokinetically. Entropy production then requires a physical lowest order banana regime ion
distribution function to be nearly an isothermal Maxwellian with the ion temperature scale
much greater than the poloidal ion gyroradius [6]. Thus, the background ion temperature
profile must have a pedestal with a scale much larger than that of any density pedestal with an
ion poloidal gyroradius scale. In addition, weak ion temperature variation with subsonic flow
in such a pedestal requires electrostatically restrained ions and magnetically confined
electrons thereby impacting zonal flow behavior.

Simulating tokamaks on transport time scales requires evolving drift turbulence with
axisymmetric neoclassical and zonal flow radial electric field effects retained. Full electric
field effects are more difficult to retain than density and temperature effects since they require
evaluating the ion distribution function to higher order than standard gyrokinetics. An
electrostatic hybrid gyrokinetic-fluid treatment using moments of the full Fokker-Planck
equation removes the need to go to higher order. This hybrid description evolves potential,
density, temperatures, and flows, and models all electrostatic turbulence effects with
wavelengths much longer than an electron gyroradius.
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