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1 Introduction

Impurity behavior in tokamak plasmas is a complex problefateel to confinement and
transport of the bulk ions and electrons and to plasma-wtdtaction. This is a very important
issue for the development of fusion reactors. Besides afoagttheoretical and experimental
effort, this topic is not completely understood. We dischege several aspects of impurity
transport in turbulent plasmas.

We have shown [1] that the gradient of the confining magnetid fienerates a pinch (average
velocity) in turbulent plasmas. It is a ratchet type prodéss appears in test particle approach
due to the modification of guiding center trajectories. ltetimines the contamination of the
plasma from the source of impurities localized at the borBarticle collisions and plasma
poloidal rotation are included in the test particle modeé $tiow that strong nonlinear effects
appear when trajectory trapping or eddying is effective.afiditional effect of the magnetic
field gradient appears when particle density is considéheddivergence of thE x B drift pro-
duces a pinch velocity, the curvature or turbulent equipantpinch [3], [4]. We show that the
density pinch is not equal to the curvature pinch and thatstriongly influenced by the ratchet
effect. Impurity accumulation (density peaking) is stubdées function of the characteristics of
the turbulence.

The evolution and the statistical characteristics of theurnty density passively advected by
the drift turbulence modeled by the Hasegawa-Wakatami (ldg¢jation is numerically inves-
tigated. We have shown [9] that the impurity density and theieity of the E x B drift exhibit
similar multifractal behavior. A good agreement is foundin®en the impurity density relative
exponent and the She-Leveque model, which shows that ententex filaments are responsi-
ble for impurity transport. The numerical simulation of th&ourity density in HV turbulence

is performed and the impurity pinch is analyzed.
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2 Impurity pinch produced by the inhomogeneity of the magneic field

We consider in slab geometry an electrostatic turbulengeesented by an electrostatic po-
tential ¢®(x,t), wherex = (x1,X2) are the Cartesian coordinates in the plane perpendicular to
the confining magnetic field directed alongxis,B = Be,. The magnetic field depends on the
distance from the main symmetry axis Bs= Boexp(—x1/Lg), whereBy is the value of the
magnetic field in the origin of the coordinates that ixat 0 andLg is its characteristic decay
distance. The electrostatic potential is considered todtateonary and homogeneous Gaussian
stochastic field with known two-point Eulerian correlatiiumction (the Fourier transform of
the spectrum). We study the transport of test particlegi¢ge2.1) and of passive fields (section
2.2) advected by such stochastic field.

The aim of this study is to determine the transport of impesias function of the charac-
teristics of the turbulence. It provides the transport ficieht scaling in different regimes and
the understanding of the nonlinear effects. In particutes,conditions that correspond to im-
purity accumulation can be identified. A self-consistenneucal study of impurity dynamics
is presented in section 3.

2.1 Test particle pinch

The test particle motion in the guiding center approxinratsomodeled by

dx(t)
dt
wherex(t) is the trajectory of the particle guiding centerjs the gradient in théxs,X2) plane,

= —exp(x1/Le)0p(x,t) x &+ Vp+n(t), ()

o(x,t) = ¢°(x,t)/Bo, Vp is the average velocity angl(t) is the collisional velocity. The tur-
bulence is characterized by three parameters: the amgWtud the stochasti& x B drift, the
correlation timere, which is the decay time of the Eulerian correlation and threstation length
Ac, Which is the characteristic decay distance, which combirtbé Kubo number

T, VT,
Rk 2
wherets; = A¢/V is the time of flight of the particles over the correlationdém The shape
of the Eulerian correlation does not influence the generahter of the transport, but only
the strength of the trapping effe@][ The collisional velocityn is modeled by a zero average
Gaussian white noise with the collisional diffusion coeffit x = p?v/2, wherep = V;,/Q is
the Larmor radiusviy is the thermal velocityQ2 = gB/mis the cyclotron frequency andis the
collision frequency. The collisional diffusion coeffictetlepends on space through the Larmor
radius due to the magnetic field inhomogeneityas xoexp(2x1/Lg), wherexo corresponds

to the reference magnetic fielBg. The average velocity , is taken along, axis that represents
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the poloidal direction. This velocity is the differencewetn particle average velocity and the
poloidal rotation velocity of the stochastic potential.eTeollisions and the poloidal rotation

introduce two dimensionless parameters

— T X0 & T _Vp
= — =, — = 3
Xo Tl ® 5"V 3)

p=

where the collisional timego = A2/ X0 is the time during which the collisional mean square
displacement attain?, Tp = Ac/Vp is the time of decorrelation by the average velocity and
Vp = |Vpp|. One can note that Kubo numbgg andV  are similar in the sense that all describe
physical effects (time variation of the potential, colhss and average velocity respectively)
which perturb the motion along the potential contour lirgmallXg andV , and largeK corre-
spond to nonlinear regimes strongly influenced by the sireatf the stochastic potential.

We use the decorrelation trajectory method [6], [7] for thkalation of the average velocity
and of the diffusion coefficient for given Eulerian corredatof the potential and for arbitrary
values of the parameters of this modkl (xo, V, andR = Lg/A¢). This is a semi-analytical
approach based on the study of the stochastic equation Eljbensembles of realizations of
the stochastic field, which are determined by given valuésepotential and of the velocity in
the starting point of the trajectories.

An average asymptotic velocity of tlex B stochastic drift (the ratchet effect) is obtained for
Xo, Vp = 0 provided that there is a gradient of the magnetic field €iRjt and time variation
of the stochastic potential [1]. For a static potential therage velocity is transitory and it
has a finite asymptotic valuéR only for finite correlation time (i.e. finit&) of the potential.
This average velocity is along the gradient of the magnetld flalongx; axis) and is given by
VR = (V/R)f(K) where f(K) is a dimensionless function. This function is positive forasl
Kubo numbers (corresponding ¥R directed against the gradient of the magnetic field), at a
valueKjny, that is of the order lthe ratchet velocity becomes negative (parallel wiB) and it
decays to zero fdk — . The absolute value of this function is represented in Fig/. thb blue
line. The physical explanation for this behavior of the agervelocity is the following. For fast
variation of the stochastic field(< 1), the displacements during the correlation time are much
smaller tham and they are along the initial velocities. The latter desega the direction of the
gradient of the magnetic fieldB producing displacements that are smaller than in the ofgosi
direction. An average displacement appears in the dineetiaB (positivex; ). At large Kubo
numbers a part of particles are trapped and perform dugraimost periodic motion on the
corresponding contour line of the potential. The space midgece of the magnetic field does

not change the paths of the guiding centers in static patemthich are the contour lines of the
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Figure 1:The ratchet pinch normalized withAR as function of the Kubo number for the values

of Xp that label the curves

potential, but it only influences the velocity along the gathis larger in the low magnetic field
side and thus the patrticles stay there shorter time thareihitih field side. Then, the average
displacement is negative and corresponds to a pinch vglodhe direction of 1B.

The influence of collisions on the motion in the stochastiteptal is obtained as an effective
Eulerian correlation [2]. The spreading of the trajectodee to collisions produces the decay
of this function. Namely, the amplitude of the collision eaged potential decays in time with
the factor 1+ 2xot and the square of the correlation length increases with dngesfactor.
This behavior is obtained also for constant magnetic fieldl determines an effective Kubo
number that decays in time. The specific effect for inhomeges magnetic fields consists in
the drift of the effective Eulerian correlation with the @eity —3Xo/R alongx; axis. This drift
is produced by the correlation that appears between theiobeneity of the magnetic field and
the stochastic potential through the collisional disptaerts that are inhomogeneous as well.
This is a nontrivial nonlinear effect. Collisions also deteée a direct contribution to the pinch
due to the space dependence of the diffusiyiipduced by the magnetic field.

A very strong influence of collisions on the turbulent pinsiseéen to appear from very small
collisional diffusivity. The pinch velocity is much modiigor K > 1 (in the nonlinear regime
of the turbulence), but very weakly influenced Fok 1 (in the quasilinear regime). This regime
is represented in Fig. 1 by the red lines, which corresponatg small collisional diffusivity
(Xo = 0.01, and 005). These curves are superposedor. 1 and show significative increase
of the pinch velocity at largK. At larger values ojfp the dependence is reversed (see the black
lines in Fig. 1). But at these values ®§ the average velocity is collision dominated and the
direct contribution of collisions is much larger than thebwence effect.

The poloidal velocity determines the decrease of the pirdboity [2]. The decrease appears
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only at large Kubo numbers¥, < 1 and for all values oK if V|, > 1. The dependence on the
Kubo number at larg& is practically unchanged: it remains approximatel|Kas.

In the presence of poloidal rotation and collisions, thecpivelocity becomes a complicated
function of the three parametexs, V, andK. In the weekly collisional nonlinear regime char-
acterized by existence of trapped trajectories, the cofissproduce the increase of the pinch
velocity. They also can produce a second inversion of theesefithe average velocity at large
values oK. The increase of the pinch velocity by collisions roughly g@nsates the decay due
toV, reaching at larg& typical values that are of the order of those obtained in tipetturbed
E x B drift (Xo0,Vp=0).

There is however an important difference between the geztland unperturbed case. The
ratioVR/D is much larger than in the unperturbed case due to the strecrgase of the radial
diffusion coefficient produced by the poloidal rotation.i§ hatio is the measure of the effect
of the direct transport. The latter is dominant for largeuesl of this parameters and leads to
peaked probability profiles. The values of this parametettfe unperturbe& x B transport are
small, of the order 12R for both quasilinear and nonlinear conditions. Much langsues are
obtained in the nonlinear case #ér> 1 in the presence of a weak poloidal rotation. Collisions
can also contribute to the increase of the ratio of directitiugive transport but the main
contribution comes from the poloidal rotation, which sgbynincrease this ratio by decreasing
the radial diffusion coefficient. The weak collisionaliggime)y < 0.1 roughly corresponds to
the range of the normalized collision frequency that appetre measurements of the density
peaking factor in H mode plasmas presented in Ref. [8]. Thaegaof the poloidal velocity
corresponding to the nonlinear regime grd 00am/ sec
2.2 Density pinch

Due to the space dependence of the magnetic field thB velocity has non-zero divergence

and the density is compressible

-0B
(9m+v~Dn:nV . (4)
An average velocity/ is obtained
V21,
V¢.=DUOIn(B) = — T e (5)
B

whereD = V21, is the diffusion coefficient ang, is the unit vector along; axis. This velocity
is called curvature or turbulence equipartition pinch apgears due to the compressibility

effect produced by the inhomogeneity of the confining magrietld (the right hand side term
in EQ. (4)).
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We derive the equation for the average density from the ssichadvection equation (4) us-
ing the characteristics method and taking into accountffeeteof the inhomogeneous magnetic

field on particle trajectories. The average density is oledias

/

n(x,t) = /d2><’ No(X) exp(—xll__ Xl) P(x —x,t) (6)

B

where the probability of the displacemefss defined byP(x — x',t) = (3 [xX' — x(0;x,t)]) and
Np is the initial density. The two effects of the gradient of thagnetic field appear in Eq. (6):
the compressibility determines the exponential factodeviiie modifications of the trajectories
should be reflected in the probabili®y

A general expression for the density pinch velocity thatigggor quasilinear and nonlinear
turbulence was derived in [5]

D

Thus, the density pinch velocity is the sum of the ratchet @mdature pinches. Eq. (7) also
shows that the curvature pinch in the nonlinear turbulesalne same structure as in the quasi-
linear case but contains the effect of trajectory trappmthe diffusion coefficienD = D(K).
The density pinch velocity for the quasilinear turbulere¥ = —V21./2Lg. This velocity is
different from both curvature and ratchet pinches. It i$ b&the curvature pinch (5) and it has
the amplitude of the ratchet pincR?) but opposite direction (parallel to the gradient of the
magnetic field).

The effect of the pinch velocity,, on the average density profile appears in the dimension-
less parametep = aV;, /D (wherea is the minor radius) rather than in the absolute values. This
parameter, the peaking factor, is an estimation of the geedensity gradient determined by
the equilibration of the advective and diffusive transpehien the boundary fluxes are negli-
gible. One obtains in these conditioagL,, = p, whereL,, is the characteristic length of the
average density. The peaking factor produced by the depisith (7) isp = |a\k/D —a/Lg|.

This shows that the curvature pinch (second term) contbtd the peaking factor with a con-
stant (small) valug = a/Lg = a/R. Density peaking can be driven by the ratchet pinch. It is
important to note that this effect appears only in nonlinadsulence K > 1) in the presence

of poloidal rotation.

3 Self-consistent numerical simulations

Numerical simulations of the Hasegawa-Wakatani (HW) tlebce were performed to un-
derstand the fundamental process of impurity pinch. The Hgfesn, despite its underlying
simplifying assumptions, contains the basic elementsvestigate transport, including a large
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Figure 2:Contour plots of the impurity density advected by the HWailence.

spectrum of turbulent fluctuations and the spontaneousdtom of coherent structures. It has
been investigated by many authors in the last two decaded PllIn particular, HW system
allows the study of cross-field transport by electrostatift diaves. The phase difference be-
tween the potential and the density fluctuations is corgdatly the parameter Depending on
the value of this parameter two limits are distinguishedhln c > 1 adiabatic limit, the elec-
trons have a Boltzman distribution, there is no phase d@iffee between andg, and the model
reduces to the Hasegawa-Mima equation. On the other hatitk i« 1 quasi-hydrodynamic
limit, the system reduces to a two-dimensional Navier-8sok&quation describing tHe x B
flow, and a passive advection equation describing the defhsttuations.

Direct numerical simulations of HW system are performedbfb2 x 512 grids with a square
box sizeL = 64 with double periodic boundary conditions using a finitéedence method for
spatialy. The nonlinear terms are computed using a metheelajgd by Arakawa [10]. The
time stepping is performed using a predictor-correctoesa We have focused on the quasi-
adiabatic regime obtained for= 0.7, which is more relevant for the tokamak edge turbulence.
Once the system reaches a well established saturateddntbedime with stationary statistical
properties, we inject Gaussian stripes as initial impytiffs and then let them advected by the

background turbulence according to Eq. (4).
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We have determined the evolution of impurities that araaltlocalized in a narrow strip,
and we have estimated from these results the time evolutithe@verage and the mean square

displacement. A good agreement with the theoretical reswat obtained.

4 Conclusions
Impurity accumulation (density peaking) can appear dubeatadient of the magnetic field
only in the presence of trajectory trapping and of a slow plallorotation, with velocity of the
order of 1dm/secfor JET plasmas. In these conditions, the presence of oikdletermines a
dependence of the peaking facothat is similar to the JET H-mode database for the range of
the effective collision frequency appearing there, antl pfhdecays at weaker collisionality.
These studies strengthen the idea that the impurity trahsptmkamak turbulent plasmas is
a nonlinear process with characteristics far from the Gaosmes, with intermittent behavior

and memory effects.
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