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Abstract. GAMs oscillate between states of strong rotation and uprdasymmetric plasma compres-
sion. Hence, at first glance the natural turbulent drive @nping) mechanisms for them is either a
direct boost of the rotation — via Reynolds stress — or thatimme of asymmetric pressure distributions
— via transport. However, an up-down asymmetric pressurelsm be created by the divergence of the
diamagnetic drifts, if there is a perturbation in the diametie drift velocity, i.e., of the overall pres-
sure gradient. That in turn may fluctuate due to any modulatiothe flux surface averaged turbulent
transport. On the other hand, a modulation of the turbulemsport due to the GAMs themselves is
expected to happen in the tokamak edge, and has been obsamigdn in simulations and recently
in many experiments. In turbulence simulations for edgeupaters, the described effect tendencially
is a strong driver of the GAMs of equal importance to the otiar. As a striking consequence, the
coupling of diamagnetic velocity and GAM can produce prateng fronts of high flow velocity and
transport, which closely resemble avalanches — withouwt sty of a critical gradient. The diamagnetic
flow drive is strong enough to advance the flow and transpggrlan radial direction — although the
linear dispersion relation would just result in a localizestillation! An interesting consequence of the
diamagnetic drive mechanism is that it offers the possjbdf direct excitation of GAMs by resonantly
modulated external heating (replacing turbulent trartspith heating power). If the GAMs are detected
by Doppler reflectometry, the achievable efficiency is é¢algaenough for diagnostic purposes such as
to activelyprobe the GAM frequencies or to measure the turbulence nsgpto the GAMs. Particularly
exciting however is the prospect of a wayanificially set up a GAM pattern to control the transport.

1. Introduction

Geodesic Acoustic Modes (GAM), poloidal flows oscillatirtgfee characteristic acoustic fre-
guency of a tokamak or stellarator, are an ubiquitous edgenph phenomenon in magnetic
fusion devices [1, 2]. In recent years they have dramayigdined experimental interest and
are candidates for applications ranging from plasma disiigs[3] to transport control [2].

GAMs and the somewhat better known stationary Zonal Flogs ais the two linear eigenstates
from the coupling of perpendicular plasma rotation and lpglrsound waves by magnetic inho-

mogeneities such as due to toroidal curvature. Both hawealino radial velocity component

whence they are in practice completely stable against atiglrpressure gradients. Although
turblence driven stationary Zonal Flows have been thezaiyipredicted somewhat earlier than
the GAMs, the latter were detected first in experiments, dubéir clear signature of a rather
well defined frequency.

GAMs oscillate between states of poloidally homogeneotation and (for a tokamak) up-
down antisymmetric plasma compression. Hence, at firscgléme natural turbulent drive (or
damping) mechanisms for them seem to be either a direct lbbts¢ rotation — via Reynolds
stress — or the creation of antisymmetric pressure digtobs — by vertical oscillations of the
turbulent heat transport — which may both be synchronisdd thie flow oscillation by its
shearing action.
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2. M echanism

However, an up-down antisymmetric pressure can also bé&cteaore indirectly by the turbu-
lence if it perturbs the ion diamagnetic drift velocity or maccurately the diamagnetic heat
flux, e.g., by local flattening of the overall radial pressgradient due to turbulent transport.
Due to the inhomogeneous magnetic field, the perturbed amaljnetic flow and heat flow will
exhibit an up-down antisymmetric divergence which creatpgessure perturbation exciting the
GAM. (While the diamagnetic flows of the electrons have dydbe opposite divergence, their
asymmetries are instantaneously erased due to the mudemedectron mobility along the
magnetic field lines.)

This requires a diamagnetic velocity modulation in res@eanith the GAMs, and thus a mod-
ulation of the flux surface averaged turbulent transporti proper phase relation with the
oscillating flow. On the other hand, a modulation of the tlghtitransport due to the GAMs
themselves is expected to happen in the tokamak edge, anba®bserved early on in sim-
ulations [4] and recently in many experiments [5].

In the simulations [4] it was found that the turbulent tram$ps modulated by the shear flow
such that it is essentially proportional to the local flowogity in electron diamagnetic direc-
tion. This may be described roughly by the empirical relatio

3Q = y82(Q — Vg + Pvai)- (1)

with appropriate empirical constardsf3,y. The form of this relation is severely restricted by
Gallilean invariance i direction of the fundamental equations, mirror symmetrihwespect
to the minor radius and the fact that the poloid# x B velocity vg is only important through
its effect on the phase velocity. For example, the relatmnot directly involvevg but only

its derivatives,vg. The contribution from the poloidal ion diamagnetic vetgoyy; occurs,
since the phase velocity is the differencevgfand a mode specific constant timeg. v is
typically rather large, so that essential ~ avg — Bvgy; as for the relevant radial wavenumbers
of GAMs k?y < 1. For simplicity the contribution from the diamagnetic oty outside the
radial derivative operator has been neglected even thaugtinciple the transport for very low
wavenumbers is reduced if the ion diamagnetic velocity ggpes.e., if the gradient decreases.

Neglecting neoclassical transport one obtains from tharheat transport balance a modula-
tion of the local ion diamagnetic velocity equal to

: : 2 20 2
—iwdVgj = —iwd, dp; = —éaféQ = —?afve + gBarzvdi, (2)
_ 2iak?ve
OVdi = 31 2ipke 3)
with the dimensionless units, = p;j,to = R/(21/To/m;) and the fluctuation variables
_ dnp* . OTip* _ edgp”

The fluid ion density and temperature equation equationthh®GAMs may be written as

n—A(@+n+Ti) —C(e+n+T) =0 (5)

.2 (. T 2 7 2
Ti— éA <(P+ n+ ETI> - §C ((P—HH-E-H) + éarQ— 0, (6)
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where for simplicity of the following argument, in (6) paedlsound waves and heat conduction
have been omitted. The geodesic curvature operator

b b B
CE<DX§)-D%2<EXH)-D, Iﬂ',:aHb, bZE (7)

computes the divergence of tl#&x B and diamagnetic flows fromp andn, T;, respectively. In
circular geometry the geodesic curvature terms are si@phsinGd;. The finite larmor radius
(FLR) (or diamagnetic) heat flux requires the factg® instead of 1 in front of the second and
third occurance off; in (6), which is shown below to be essential for the diamagratve
mechanism. The electrons may simply be taken to be adiabatic

n=0-@ ®)

where@ = (@) is the flux surface average of the electric potential and iwh electron den-
sity are equal due to quasineutrality. Assumk?gi2 < 1 (as is corroborated by turbulence
simulations), the Laplace operators in (5,6) can be negeexcept when taking the flux sur-
face average of (5), since thep= (n) = (¢) — () = 0 due to equation (8), and the Laplacian
contains theonly time derivatives in the equation. The flux surface averag®)afeads

~A(Qo+Tio) — (C(O—@+n+T—Tig)) =0 )
&~ (@+Tio) — (C(2n+Ti —Tig)) =0. (10)

Integrating this equation over noting thatA = 92 andvg = 8, @, Vg = Or(No+Tip) =0:Tio
yields
Vg +Vgi = —((sin6)(2n+Ti — Ti o)). (11)

Theb-dependence of the fluctuations can be obtained by comb{&)rand (6), neglecting now
the Laplacian and taking into account tigats independent o,

204 T~ T o %C(B(p-l— 8n+13T) = 0. (12)

. : 1
<:>2n+Ti—Ti,o—§C(8cpo+16n+13Ti):O. (13)

Using the additional assumption, thatk, > 1, i.e., that the phase velocity is much larger than
the curvature drift velocity, one can neglect the curvatare acting om andT; — T g in (13)
and write

N : 1 1.
N+Ti—-Tio= :—%C(&Po-i- 13Ti70) = §SIn9(8V9+ 13vgi)- 14

Inserting (14) into the time derivative of eq. (11) and cargyout the flux surface averages
results in

. 1
Vg + Vigi = — = (8vg + 13vyi) (15)

6
With weam = 2/+/3 in this simple model, the GAM velocity obeys thus the ecurati
13
COZ(V9+5Vdi) :(’%AM (Ve+§5vdi) , (16)

resulting in the dispersion relation

2iak? \ 13 2iak?
‘*’2(1+3w+2i3k?) = W6ay (1+§3w+2i3k?>' (17
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Figure 1: Color coded plots of GAM poloidal flow velocity (fppon diamagnetic velocity
(middle), turbulent ion heat flux (bottom) versus time andoniradius from a fluid turbulence
simulation for parameters from the transitional regime K}ax= 0.4 taking ~ 3x, where
X is the heat diffusivity, which corresponds to a preferred\G¥avelength of about 20 in the
units of this figure.

Note that without the FLR heat flux in eq. (6) the factor/&3n this equation were in fact be
one and the diamagnetic terms would cancel exactly. TheridesicGAM drive mechanism
indispensibly requires the FLR heat flux.

To lowest order irx the dispersion relation yields

3ak? 20k ) (18)
900+ 4B%KE  cocam(96B 4y +4B%KE) )

5/.
(D%Q)GAM—i-g (I

The imaginary component indicates growth of the GAMSs predithata is positive, i.e., that
local poloidal flows in electron (ion) diamagnetic directiare accompanied by maxima (min-
ima) of turbulent transport (as was observed computatipf@land experimentally [6]).

The growth rate in Eq. 18 exhibits a maximum at a wavenurkhgs = / 3w/ (2B) depending
on the sensitivity of the turbulence to the gradients (essentially the diffead diffusivity,
about 2-3 times the turbulent diffusivity). Nonlinear effe beyond this toy model, the other two
turbulent drive/damping terms mentioned above, and dasisip likely will reduce the growth
rates overall while still basically conserving the wavejgmscaling.

Fig. 1 shows a flux surface averaged flow velocity, ion dianeigivelocity, ion heat flux versus
time and minor radius from a fluid turbulence simulation fargmeters from the transitional
regime [4]. Note the characteristic diamagnetic-velodibyible-layers caused by the ion heat
flux modulation in phase with the GAMs. About 30% of the GAMwarin this case stem from
the diamagnetic velocity modulation.

Whether the above mechanism is an effective driver of the GAlgpends on the strength of
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Figure 2: plots of flow (top) and turbulent heat flux (bottowr) the time evolution of an initially
isolated single GAM peak

the transport modulation, the geometry controlling the ontgince of the diamagnetic drifts,
and the ratio of turbulence time scales and GAM frequencis tiowever persuasive that the
estimate of the GAM wavelength derived from the above arquragrees with the observed
one. In turbulence simulations for edge parameters, theritbesl effect tendencially is a strong
driver of the GAMs of equal importance to the other two.

3. Consequences

As a striking consequence, the coupling of diamagneticoisi@and GAM can produce propa-
gating fronts of high flow velocity and transport, which @tsresemble avalanches — without
necessity of a critical gradient: Fig. 2 shows the time etvotuof an initially isolated single
GAM peak (with turbulence) for identical background paréene as Fig. 1. The diamagnetic
flow drive is strong enough to advance the flow and transpgdrlan radial direction (the
preferred wave-number derived above fixes the phase weloaitsidering that the GAM fre-
guency is mostly determined by linear physics) — althoughlitrear dispersion relation would
just result in a localised oscillation!

An interesting feature of the diamagnetic drive mechansthat it offers the possibility of di-
rect excitation of GAMs by resonantly modulated externaiting (replacing turbulent transport
in (1) with heating power). If the GAMs are detected by Doppéflectometry, the achievable
efficiency is certainly enough for diagnostic purposes sagkoactivelyprobe the GAM fre-
guencies or to measure the turbulence response to the GAMEcFarly exciting however is
the prospect of a way tartificially set up a GAM pattern to control the transport.
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