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Abstract. We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully non-

linear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The

electric �eld is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following:

(1) High harmonic resonances (n > 2) signi�cantly enhance geodesic-acoustic mode (GAM) damping at

high-q (tokamak safety factor), and are necessary to explain the damping observed in our TEMPEST

q-scans and consistent with the experimental measurements of the scaling of the GAM amplitude with

edge q95 in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and

damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients

in the form of outgoing waves, its radial scale is set by the ion temperature pro�le, and ion temperature

inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric

�eld evolves through di�erent phases of relaxation, including GAMs, their radial propagation, and their

long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-o� layer region in

divertor geometry are substantial non-Maxwellian ion distributions and 
ow characteristics qualitatively

like those observed in experiments.

1. Introduction

Geodesic acoustic modes (GAMs) have been clearly identi�ed experimentally in tokamak
and stellarator plasmas and play an important role in edge transport barrier formation.
Both the GAM and zonal 
ows (ZF) are driven by turbulence, however the GAM can be
damped both by wave-particle resonances and collisions, while gyrokinetic ZFs are only
damped by the collisional friction between trapped and circulating ions. The turbulence

uctuation levels and transport are in turn regulated by the GAM and ZFs via the time-
varying ExB 
ow shear de-correlation, which impact on the L-H transition. This work
presents several important advances in our understanding of GAMs and zonal 
ow, and
radial electric �eld of a neoclassical plasma.

1This work was performed for the U.S. Department of Energy under contract under Contract DE-
AC52-07NA27344, Grant No. DE-FG02-04ER54739 at UCSD, and grants DE-FG03-95ER54309 at general
Atomics and DE-AC02-76CHO3073 at PPPL.
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2. A heuristic kinetic model for the evolution of radial electric �eld in toroidal
plasmas

In the long wavelength limit k?�� � 1, the self-consistent electric �eld is computed from
the full-f gyrokinetic Poisson equation for multiple species [1, 2]
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It can be shown that by taking the time derivative and 
ux-surface averaging Eq. (1),
assuming the electrostatic potential to be constant within a 
ux surface, substituting the
0th-moment of the conservative form of gyrokinetic equation for the density on the right
side, and �nally integrating Eq. (1) over the radial coordinate (valid for a local analysis)
with Er = 0 at the boundaries, the radial electric �eld evolution obeys the radial Amp�ere-
Maxwell law averaged over a closed-
ux surface

 
1 +

X
�

c2

v2A�

!
@

@t
hE � r i = �4�X

�

hJ � r i = �X
�

4�Z�e

M�
h
Z
B�
kd�vkd��F��vd � r i (2)

where  is the poloidal magnetic 
ux, h� � �i represents the 
ux surface average, and J is
the sum of all the current in the plasma, including the gyro-viscosity current, and the ion
guiding-center current due to its orbital dynamics (the corresponding electron current is
typically neglected in tokamak geometry, because it is smaller than the ion current by a
factor of the mass ratiome=mi). The quasi-steady-state radial electric �eld Er on a magnetic
surface is obtained from the condition hj i = 0. We note the mathematical equivalence of
the two approaches for solving the radial electric �eld of a neoclassical plasma from Eq. (1)
and Eq. (2) in the large-aspect-ratio limit.

By taking the time derivative of Eq. (2), inserting gyrokinetic equation into the right side,
and then assuming F� ' FM� + Æf� in the integral, where FM� is the local Maxwellian
distribution function (for simplicity assuming isothermality; the inclusion of an ion tem-
perature gradient leads to more complicated neoclassical sources, but with precisely the
same �nal conclusion except for the appearance of Eneo

r ), we obtain a dynamical equation
for the radial electric �eld,
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where the �rst of group terms on the left side represents the displacement current and ion
polarization currents, the second term gives the GAM frequency, the third term yields the
GAM collisionless damping, and the fourth term produces the collisional damping (C(Æf) is
the linearized ion collision operator). In the quasi-steady state with a drifting Maxwellian
distribution Æf� / vkFM�, the last term on the right side furnishes the source for the
standard neoclassical relationship between Er from the second term and the parallel 
ow
Uk from streaming in the third term on the left side. Here Er = E �r . The solution to this
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equation describes relaxation of the radial electric �eld and, heuristically, can be written
in the form:

Er(t) = Eneo
r +

h
EHR
r + EGAM

r e�(i!GAM+
GAM )t
i
e�
ct: (4)

where (see Sec.3.) !GAM = (
p
7 + 4�=2)(vT i=R) is the GAM frequency [3], � = Te=Ti for a

single ion species and R is the major radius, where 
GAM is the collisionless GAM damp-
ing [4, 5, 6, 7, 8], ERH

r (t =1)=Er(0) ' (1+1:6q2=
p
�)�1 is the Rosenbluth-Hinton residual

zonal 
ow [9], Eneo
r = (Ti=e)(@ lnN�=@r) describes the equilibrium value of the radial elec-

tric �eld which follows the standard neoclassical relationship between Er and Uk [10], and

c ' �ii is the collisional damping rate of the zonal 
ow [11, 12]. From the discussion above
it is clear that the GAM is essentially an ion mode, where the ion polarization current is
responding to charge separation caused by radial ion grad-B drifts as delineated in the �rst
two terms of Eq. (3).

3. 4D TEMPEST Simulation Results in Circular Geometry

In this section we will discuss the GAM collisionless damping mechanism, the radial propa-
gation and the \quasi-steady state conditions" on the standard neoclassical transport time
scale. We develop a relaxation method to eÆciently solve the gyrokinetic Poisson equation
to remove the gyrosheath singularity, to correctly yield the standard neoclassical relation
between Er and Uk, and simultaneously to obtain the poloidal variation of the electro-
static potential. With the fully nonlinear (full-f) continuum code TEMPEST we compute
the radial particle and the heat 
ux, the evolution of the electric �eld through di�erent
phases of relaxation (development of GAMs, their radial propagation, and their long-time
collisional decay) in a circular-geometry edge plasma [2, 4].

3.1 Collisionless damping of Geodesic-Acoustic Modes

In our 4D simulations (with @=@� = 0 in the 5D code) for a homogeneous plasma, the
initial ion distribution is a local Maxwellian. The charge is radially separated by an initial
sinusoidal perturbation of the ion density with no variation within the 
ux surfaces Æni =
Æn0 sin(2�r=L ). The electron model is a fully nonlinear Boltzmann ne = hni( ; �; t =
0)i exp(e�=Te)=hexp(e�=Te)i, where hi represents the 
ux-surface average. This choice of
coeÆcient for the Boltzmann electron model means that there is no cross-�eld electron
transport. Both the radial and poloidal boundary conditions are periodic. We consider a
simple circular cross-section tokamak with the magnetic �eld B = B�e� + B�e�, where �
and � are the toroidal and poloidal angles of a torus, respectively, with � = 0 chosen to be
at the outboard midplane of the torus. The inverse aspect ratio � = r=R0 where r is the
minor radius is not assumed to be small. The major radius is given by R = R0(1 + � cos �)
and B� = B0R0=R. The equilibrium parameters used are B0 = 15T, R0 = 1:71m, and
Ti = Te = 3keV with deuterium ions. We take B�(r) to be radially uniform to justify
the radial periodic boundary conditions. The large B0 is used for the global simulations
with Æi=L � 1, where Æi = q�i is the drift-orbit size and L is the radial box size. The

resolution is n = 32; n� = 64; nE = 30 and n� = 60. �s = cs=
ci; cs =
q
2Te=Mi; vthi =q

2Ti=Mi; Te = Ti; � = r=R = 0:2: 
GAM and !GAM are measured in units of vthi=R0.

The damping rate of the GAM vs q for a �xed � = 0:2 and kr�i ' 0:1375 is plotted in
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Fig. 1a). The curves come from the theory of Gao et al [7], where a series of Bessel func-
tions for �nite orbit width and plasma-dispersion-function-like integrals along the Landau
contour for higher-harmonic resonances are included. The dispersion relation is solved by a
direct numerical-integration technique retaining many harmonics. The dotted curve omits
the �nite-orbit-width (FOW) e�ect; the dot-dashed curve includes additional damping at
the 2nd resonance as done by Sugama and Watanabe [6] and Gao et al [7]; the dashed
curve is the theory retaining additional damping up to the 4th resonance; the solid curve
is the theory retaining additional damping up to the 10th resonance; The black points are
TEMPEST simulation results. Also plotted are results from a 5D gyrokinetic continuum
code GYRO (purple squares) [13], and a gyrokinetic PIC code XGC (red diamonds) [14].
The error bar from TEMPEST simulations represents the uncertainty in �tting to a single
decaying exponential. The FOW e�ect dramatically enhances the GAM damping rate at
q > 2 by inducing multiple resonances in phase space. For the same parameters, the damp-
ing rate is almost zero if the FOW e�ect is ignored. Furthermore, Fig. 1a) clearly shows
that higher-harmonic resonances at vresk ' !GqR0=n with n > 2 become important when
q > 3:5. The higher-harmonic resonances are included in the simulations, and comparisons
between theory and simulation show that the theory retaining up to the 2nd resonance is
a good approximation only for q < 3:5. Our theoretical treatment, retaining up to 4th res-
onance, is required for 3:5 < q < 9. A corresponding analytical expression for the damping
rate is systematically derived, including higher-order harmonics of the ion transit frequency
and valid over a broad range kr�it � 1 and q � 1 [8]. For the same parameters used in
Fig. 1a), the analytical formula predicts damping rates in very good agreement with the
numerical and simulation results in its validity regime: q > (kr�it)

�1=2 � 3.

-γ (s )
G

-1

1.0×10

1.2×105

8×10 4

6×104

4×10 4

2×104

0

q
1 2 3 4 5 6 7 8 9 10

theory w/o FOW
theory w/ 2nd resonance
theory w/ 4th resonance
theory w/ 10th resonance
TEMPEST(ε=0.2, k ρ=0.1375)

ir

GYRO(ε=0.2, k ρ=0.1375)
XGC1( ε=0.2, k =0.1375)

ir

ρ
ir

a)
Relative GAM damping & BES intensity  

q95

I   /I   (q=4.38)GAM GAM
0.5 0.5Measured GAM Intensity (DIII-D BES) 

γ    /γ   (q=5.5)
GAM GAM

Calculated GAM damping rate (Tempest)

b)

FIG. 1: a) GAM damping rate 
G vs q for � = 0:2 in homogeneous plasmas. The curves come from
Gao et al theory [7] with and without the �nite-orbit-width e�ect, the black points are TEMPEST
simulation results, the purple squares are GYRO simulation results, and the red diamonds are
XGC simulation results. b) GAM damping rate and integrated GAM amplitude (square-root of
intensity I) versus q95 within one discharge near r=a = 0:9 during the current ramp up (acquired
at 100ms intervals) from Ref. [15] in DIII-D edge plasmas. Here 
GAM (q = 5:5) = 3:2 � 103/s.

3.2 Radial Propagation of Geodesic-Acoustic Modes

TEMPEST simulations were carried out for an inhomogeneous plasma with density and
temperature pro�les chosen to model the DIII-D edge pedestal: magnetic �eldBt = 1:5T;R0 =
1:71m; q = 3 and " = 0:3. The ion guiding-center density and temperature pro�les are ini-
tialized as a hyperbolic tangent (tanh) function of radius centered around the middle of the
simulation domain. In this simulation a Lorentz collision model is used. An initial pulse-like
perturbation of the ion density is given with the peak centered around the middle of the
pedestal. A series of TEMPEST simulations were compared with experimental measure-
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ments from a q-scan. The enhanced GAM damping at high q is found again, which is con-
sistent with the experimental measurements of the scaling of the GAM amplitude with edge
q95 [15]. A simple model for the BES intensity I can be written as dI=dt = Sturb�
GAM(q)I,
where Sturb is the source term representing the e�ects of the \external" forces induced by
the small-scale turbulence. If the source Sturb is a weak function of q, then for steady-state
conditions a strong drop in 
GAM as q increases should correlate with an increase in GAM
intensity I, as shown in Fig. 1b). However over that same range of q variation in Fig. 1a)
as the BES measurement, there is very little change in the damping rate. The di�erence
may be due to the real DIII-D parameters and particularly the pedestal-like temperature
pro�les which turn the GAM oscillation into radial propagation in the form of outgoing
waves and set the radial scale of the GAM wave-like radial structure in our TEMPEST
simulation. This radial scale, in turn, determines the strength of the higher harmonic reso-
nant damping. The enhanced GAM damping may also help to explain the similar q-scaling
of the GAM amplitude, observed using Doppler re
ectometry in ASDEX Upgrade [16].
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FIG. 2: a) Contour plot of the perturbed ion density Æni=Ni0 = (Ni � Ni0)=Ni0 as a function of
radial position and time. Here L is the radial box size. b) Poloidal variation of potential versus
poloidal angle.

TEMPEST simulations show that the kinetic GAMs exist in the edge for steep plasma
gradients in the form of outgoing waves [17, 18], as shown in Fig. 3; and the ion tempera-
ture inhomogeneity is necessary for GAM radial propagation [2]. The linear relationship of
the peak of the contour of the perturbed ion density Æni=Ni0 as a function of radial posi-
tion and time indicates that the group velocity and phase velocity are the same. A simple
estimate shows that its radial wavelength is a function of the ion temperature gradient
scale length �

2=3
i L

1=3
T i [17], and its radial propagation velocity is on the order of the radial

ion grad-B drift. From the simple estimate based on a linearly decreased ion temperature

pro�le, we obtain vpr / (
p
7 + 4�=4)f(q)(LT i=�i)

1=3(�i=R)vT i where f(q) =
q
1 + 46=49q2.

The TEMPEST simulations yield the coeÆcient and the following relationship is obtained
vpr ' 0:76(

p
7 + 4�=4)f(q)(LT i=�i)

1=3(�i=R)vT i. Here the plasma parameters are evaluated
at the radial position where the GAM is excited near the singular layer (! = !GAM),
with the well-known Airy function behavior. In this TEMPEST simulation, it is the posi-
tion with the peak ion temperature gradient where the peak density perturbation is initi-
ated. The experimental BES measurements show a very coherent GAM in DIII-D; it has
a well-de�ned frequency in a given plasma condition/time, along with a well-de�ned kr
(typically near 1 cm�1 at about f=14-16 kHz). It appears to propagate radially outward
at the outboard midplane. The measured and calculated radial propagation velocity are
vDIII�Dpr � 2�f=kr ' (8:79� 10:00)� 102m/s and vSimpr ' 8:69 � 102m/s with LT i ' 10�i
and � = 1, showing agreement to within 15%. The probe experimental measurements on
tokamak HL-2A also show that the localized GAM packet is observed to propagate outward
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in the radial direction with nearly the same phase and group velocity, which is consistent
with TEMPEST simulations [19]. We note that the measured local velocity may be di�erent
from the calculated velocity using above formula because the GAM velocity is determined
by the parameters at the location where the GAM is excited, not where it is measured.
Therefore, by combining with ion and electron temperature, and q pro�les, the measured
velocity can be used to determine the location where the GAM is excited.

3.3 Radial electric �eld of neoclassical plasmas

Traditionally the radial electric �eld of a neoclassical plasma is evaluated according to the
radial Ampere-Maxwell's law averaged over a closed-
ux surface as described in Sect. 2.
However, this method is incomplete in the sense that the poloidal electric �eld cannot be
solved simultaneously in a consistent way. This is an unsatisfactory situation since the
potential varies signi�cantly in the edge plasma around the X-point and in the divertor
leg region due to contact with divertor plates. The gyrokinetic Poisson equation is seldom
used because the small coeÆcient in front of the Poisson operator associated with the
gyroradius makes the equation nearly singular due to a gyrosheath at radial boundaries
when �s � LP � LB. Here, LP = jr(lnP )j�1 is the characteristic gradient scale length for
the plasma pro�le, and LB = jr(lnB)j�1 the characteristic length for the magnetic �eld. We
develop a relaxation method to eÆciently solve the gyrokinetic Poisson equation to remove
the singularity and to correctly yield the standard neoclassical relationship between Er and
Uk. In a special case with a 
at ion temperature pro�le and Lorentz collisions, TEMPEST
simulations show that the electrostatic potential relaxes to a steady state, and a Boltzmann
relation is reached [2], (Zie=Ti)@�=@ + @ lnPi=@ = 0, as expected from the theory for
the case of zero temperature gradient [20]. The steady-state Uk is very small due to the
speci�ed Maxwellian radial boundary condition with zero 
ow velocity.

In a general case with an ion temperature gradient, starting from an initial state with
Er = 0 and Uk = 0, the equilibrium-scale radial electric �eld is quickly established on the
order of a fraction of a collision time after the relaxation of GAM oscillations and zonal

ow, and obeys the standard neoclassical relationship between Er and Uk, while Uk is not
yet fully evolved. The further development of Uk on the transport time scale requires careful
formulation of the gyrokinetic equation and gyrokinetic Poisson equation, including sources
and sinks, as well as higher order in �i=LB corrections to the �rst-order gyrokinetic equation.
Using the relaxation approach to solve the gyrokinetic Poisson equation we are able to
obtain the standard neoclassical relationship between Er and Uk [2], and the �rst-order
(poloidal) correction to the equilibrium-scale radial electric �eld. The poloidal variation of
the potential has been analytically estimated to vary as [21]

�
Zie

Ti
+

e

Te

�
Æ� ' C�

�i�p
2LT i

sin �: Æ� = (�� h�i) (5)

where �i� is the ion gyro-radius at the poloidal magnetic �eld, and C is a coeÆcient:
C ' 1:81��i in the banana regime and C ' p

2=2 in the plateau regime, where ��i =
��3=2�ii

p
2qR0=vT i. The comparison of the poloidal variation of potential is shown in Fig. 2b)

for the analytical estimate and the TEMPEST simulation, which is in qualitative agreement
with analytical predictions from Eq. (5) that Æ�( ; �) is found to vary sinusoidally with
a magnitude lower than the Hinton-Rosenbluth prediction. A similar trend is found in a
newly developed Eulerian code NEO for numerical studies of neoclassical transport [22].
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The lack of a quantitative agreement is possibly due to the following [22]: (1) for the banana-
regime prediction the Hinton-Rosenbluth derivation develops a singular component due to
inadequate treatment of the trapped/passing particle boundary layer and thus only the
Fourier sine coeÆcient, which is �nite, is reported in the �nal analytical result. (2) the
�nite � e�ects are neglected in the analytical theory.

4. 4D TEMPEST Simulation of Plasmas 
ows in divertor geometry

Additional results are obtained with 4D TEMPEST simulations of plasma transport in
single-null tokamak geometry. One set of simulations studies the e�ect of high-energy drift
orbits from the pedestal region that can extend across the separatrix into the scrape-o�
layer (SOL). The sign of the ion parallel velocity determines if the drift orbit is radially
inward or outward. Near the outer midplane this kinetic e�ect results in substantial mean
ion 
ow of the hot ions toward the inner divertor plate for the ion gradient-B drift toward
the X-point. For DIII-D H-mode discharge 96333, we simulate this e�ect by taking the
ion distribution boundary condition at the top of the pedestal to be a 1 keV Maxwellian
with density of 5 � 1019m�3, and then allow TEMPEST to evolve the distribution to the
separatrix and into the SOL. An energy-dependent Lorentz collision operator is used. In
the outer-midplane SOL, the ion distribution function shows a pronounced high-energy tail
giving a mean parallel velocity near sonic values toward the inner divertor, and this mean

ow reverses sign at the inner midplane as expected; coupling of this 
ow to the colder SOL
plasma needs to be modeled. Figure 3a shows the outer midplane pro�les of ion density
and temperature for this case. In addition, the kinetic simulation shows that the 
ux of
ions lost at the divertor plates is nearly as large on the private-
ux side of the separatrix
as on the SOL side. Inclusion of a 1 kV electrostatic potential that peaks on the separatrix
and decays to zero at each radial boundary (core interface, private-
ux wall, and SOL wall)
results in a radial shift of the plasma (and thus hot-ion 
ux) toward the private-
ux side
on the outer divertor and toward the SOL side on the inner divertor as shown in Fig. 3b.
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FIG. 3: a) Radial pro�les of ion density and temperature for TEMPEST simulation of DIII-D
single-null divertor; b) Final pro�les of ion density and temperature at the inner and outer divertor
plates for the case with 1 kV potential.

5. Summary

The newly discovered higher harmonic resonances signi�cantly enhance GAM damping at
high-q (n > 2), are necessary to explain the damping observed in q-scans of our gyrokinetic
simulations, and consistent with the experimental measurements of the scaling of the GAM
amplitude with edge q. The kinetic GAM exists in the edge for steep plasma gradients in
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the form of radially outgoing waves as experimentally measured, and the ion temperature
inhomogeneity is necessary for GAM radial propagation. The radial propagation velocity
in simulation agrees with theoretical estimates and experiments.
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