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Abstra
t

The mi
rowave plasma heating has a strong in�uen
e on 
ollisional transport,

experimentally observed both in stellarators and tokamaks. The estimate of the in-

terplay between heating and 
ollisional transport implies solving a 5D kineti
 equa-

tion. We deal with this problem using a re
ently developed 
ode (ISDEP: Integrator

of Sto
hasti
 Di�erential Equations for Plasmas) in a tokamak with ripple as a test

devi
e, introdu
ing the heating e�e
ts and a non-linear 
omputation of the time-

dependent plasma temperature pro�le. The in�uen
e of heating on the relevant

transport parameters, on plasma rotation and on the velo
ity distribution fun
tion

is studied.

1 Introdu
tion

Transport and heating are usually des
ribed as separated pro
esses. The former is 
us-

tomarily solved by �uid equations and the latter, whi
h is 
onsidered as a sour
e term of

the transport set of equations, is 
al
ulated in the framework of kineti
 theory. However,

there exist several phenomena that show that transport is modi�ed by the heating e�e
ts

(see e.g. [1, 2℄), due to the interplay between mi
rowave plasma heating and transport,

and must be estimated solving the 5D kineti
 equation (3D in spa
e and 2D in momentum

spa
e).

In this work we solve simultaneously the ion transport and heating in the non-linear

regime, taking advantage of the equivalen
e between the (linear) Fokker Plan
k (FP) and

Langevin equations [3℄. As it is well-known, the FP equation is a 
olle
tive des
ription

of the system, i.e. an equation for the distribution fun
tion in phase spa
e f(t, x). An
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equivalent form is des
ribing the system with a Langevin equation, whi
h is a Sto
hasti


Di�erential Equation (SDE) for a single parti
le, where the variation of xi, the phase

spa
e 
oordinate, depends on a deterministi
 term, proportional to dt, and on a random

term dW i that des
ribes a Wiener pro
ess [3℄.

We use ISDEP, a Monte Carlo 
ode that 
al
ulates the ion kineti
 transport by following

the guiding 
entre orbits in the presen
e of ele
tri
 �eld, in
luding ion-ion [4℄ and ion-

ele
tron 
ollisions [5℄. We introdu
e in the equations a new term that estimates the

mi
ros
opi
 quasi-linear wave-parti
le intera
tion and was �rstly written in Langevin form

in [6℄. As we deal with ion transport, the heating method that we will 
onsider is dire
t Ion

Cy
lotron Resonan
e Heating (ICRH), in the range of se
ond harmoni
 of ion 
y
lotron

resonan
e frequen
y, whi
h is based in laun
hing resonant ele
tromagneti
 waves from

the edge of the 
on�ned plasma. In our 
ase, the randomness represented by the Wiener

pro
esses of the intera
tion is related to the 
ollisions with the ba
kground plasma and

with the random relative phase between parti
les gyromotion and waves. In this work,

we do not introdu
e any kind of turbulent transport yet. The wave-parti
le intera
tion is

formally the same as in the ECRH 
ase, i.e., it 
an be 
onsidered as a resonant di�usion in

momentum spa
e. We will in
lude the nonlinear evolution of the ba
kground temperature

using a self 
onsistent method, updating the temperature at ea
h step.

We 
hoose a tokamak devi
e with ripple instead of a 
omplex 3D devi
e, sin
e we are inter-

ested in studying the in�uen
e of the heating on transport rather than on the 
on�nement

properties of a given magneti
 
on�guration.

2 Modeling of 
ollisional transport and heating in a 3D

tokamak.

2.1 The tokamak model

In our test devi
e, the plasma is a 
ir
ular torus with major radius R0 = 1 m and

minor radius a = 0.2 m. The main magneti
 �eld (B0 = 1 T) as well as a small ripple,

(∼ 0.01 B0) is 
reated by 32 toroidal 
oils. The expression for the rippled magneti
 �eld is

obtained from [7℄. The ripple does not modify the toroidal magneti
 �ux in an appre
iable

way (∼ 0.01%, estimated by numeri
al integration), so we 
an take the usual expression

ρ = r/a. ICH mi
rowaves are laun
hed by two antennae lo
ated in opposite angles of the

torus. We plot the shape of the main pro�les in Fig. 1.

2.2 The Langevin Equations for the system

The dynami
s of the test parti
les is given by a set of Langevin equations. This in
ludes

several physi
al features and approximations. We study the evolution of the guiding


enter position, the velo
ity square and the pit
h: xi = (~rgc, v
2, λ), λ = v||/v. We

also 
onsider Coulombian 
ollisions with the ba
kground using the Boozer-Kuo Petravi



ollision operator.

The quasilinear wave-parti
le intera
tion used in this work is a resonant pro
ess in phase
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Figure 1: 1D pro�les: ele
trostati
 potential (Φ) and its derivative, proportional to the

ele
tri
 �eld (dΦ/dρ), temperature (T ), density (n) and poloidal (Bp) and toroidal (BT )

magneti
 �elds. In this pi
ture, the values with ρ < 0 
orrespond the high magneti
 �eld

side of the devi
e while ρ > 0 refers to the low �eld side. All the pro�les ex
ept BT are

symmetri
 in the poloidal angle.

spa
e. The resonant 
ondition is satis�ed with very small probability, but the in�uen
e

on (v2, λ) is very strong. We take a Gaussian deposition pro�le 
entered at the magneti


axis. As we will see, the �nal result is a global in
rease of the energy.

S
hemati
ally, the equations we are solving are:

d~rgc = ~v gc(x) dt, (1)

dv2 =
(

F gc

v2 (x) + F coll
v2 (x) + F ICH

v2 (x)
)

dt

+ Gv2(x) ◦ dW v2

+ GvA(x) ◦ dWA + GvB(x) ◦ dWB , (2)

dλ =
(

F gc
λ (x) + F coll

λ (x) + F ICH
λ (x)

)

dt

+Gλ(x) ◦ dW λ + GλA(x) ◦ dWA + GλB(x) ◦ dWB. (3)

The Wiener pro
ess is an independent in
rement sto
hasti
 pro
ess (Gaussian distributed)

su
h that:

dW j(0) = 0, 〈dW j(t)〉 = 0, 〈dW j(t)dW k(t)〉 = δjkdt. (4)

This pro
ess introdu
es di�usion phenomena in the system evolution. Using Eqs. (1),

(2) and (3) we 
an follow parti
le traje
tories in the 
on�ned plasma, a�e
ted by ele
tro-

magneti
 �elds using the guiding 
entre approximation: ~v gc, F gc

v2 and F gc
λ (refs. [8, 9, 10℄)

and 
ollisions with other parti
les via the Boozer operator: F coll
v , F coll

λ Gv2 and Gλ, (refs.

[11, 12℄). The fun
tions F ICH
v2 , F ICH

λ , GvA, GvB, GλA and GλB 
an be found in [6℄, al-

though some misprints have been 
orre
ted. The symbol �◦� indi
ates that we are using

Stratonovi
h algebra for the SDE system [3℄.

The Monte Carlo method is used to integrate a large number of independent traje
tories

and 
al
ulate the main 
on�nement properties as the average energy, parti
le and heat

�uxes, 
on�nement time, et
. One of the main advantages of following independent

traje
tories is that the simulations s
ale perfe
tly in massive parallel 
lusters. In fa
t, all

the 
al
ulations presented in this work have been done using grid 
omputing te
hniques,

see e.g. [13℄.
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2.3 Introdu
tion of non linear e�e
ts

Linearizing the Boltzmann equation is equivalent to study the test parti
les keeping �xed

the ba
kground plasma. This makes impossible the study of heating e�e
ts during plasma

evolution be
ause fast ions will transfer their energy to the ba
kground, and no temper-

ature rising will be observed. To over
ome this limitation while keeping the bene�ts of

the equivalen
e between the FP and the Langevin approa
h, we allow time dependent

temperature pro�les: T (ρ, t), whi
h we shall �x self-
onsistently by identifying the time

evolution of the temperature of the test parti
les with that of the �eld parti
les [5℄. Note

that time dependent pro�les are allowed in a linear FP equation, the iterative method is

the key point to introdu
e non linearities, as will be explained below. In this work we

keep 
onstant the ba
kground density, assuming that the sour
es are able to supplement

the parti
le losses.

We use as temperature pro�le the average kineti
 energy in an interval of ∆ρ = 0.1

entered in ρ at a time t: v2(ρ, t). Let qi be the quotient of the average kineti
 energy in

the i-th iteration with ICH and the energy without ICH:

qi(ρ, t) =
v2

i (ρ, t)

v2(ρ, t)
. (5)

Then, in the iteration i + 1 we take as temperature the initial pro�le multiplied by qi:

Ti+1(ρ, t) = T0(ρ) qi(ρ, t) . (6)

We stop iterating when Ti+1(ρ, t) = Ti(ρ, t) within errors, whi
h is our self-
onsistent

pro�le.

3 Numeri
al results

We use a Kloeden-Piersen algorithm [3℄ for solving our SDE system. It is similar to a

se
ond order Runge Kutta method for a given SDE for X(t):

dX i = F i(X, t)dt + Gi
j(X, t) ◦ dW j, Stratonovich SDE (7)

X i
n+1 = X i

n +
δ

2

(

F i(Xn) + F i(Xp)
)

+
1

2

(

Gi
j(Xn) + Gi

j(Xp)
)

∆W j, (8)

X i
p = X i

n + F i(Xn)δ + Gi
k(Xn) ∆W k. (9)

This method 
onverges weakly (for the averages, see [3℄) with order δ2 (δ = tn+1 − tn.) for

a 1D multipli
ative noise. Unfortunately, we are dealing with 4D multipli
ative noises and

we �nd 
onvergen
e up to order δ (spe
ially in the ICH 
ase). Performing 
onvergen
e

tests, we have to 
hoose δ = 2×10−9 s in the ICH 
ase, so the systemati
 errors are always

smaller than the statisti
al errors in the measurements in the �nal time (t = 0.05 s). When

heating is not in
luded, δ = 5 × 10−8 s is enough.

We stop iterating when we rea
h steady state and, therefore, we �nd a self-
onsistent

pro�le in v2 (Fig. 3). The main results of this work are the 
omparison of �uxes, velo
ities,

distribution fun
tions and other relevant quantities between simulations with and without

heating. In Fig. 2 we show the time evolution of several plasma features in both 
ases:
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Figure 2: Evolution (with and without ICH) of the persisten
e P (upper left), average

e�e
tive radius, ρ (upper right), total energy ET (lower left) and kineti
 energy (lower

right) in units of mc2/2. Con�nement times are τ = 0.0387(8) s and τICH = 0.0212(9) s.
We 
an observe the heating e�e
t for t > 10−3 s.

persisten
e P (de�ned as the fra
tion of surviving parti
les), e�e
tive radius and kineti


and total energy. It 
an be seen that the persisten
e of parti
les falls faster in the 
ase of

ICH. This is not surprising sin
e the average energy is in
reased and so does the outward

�ux. We 
al
ulate the 
on�nement times �tting P(t) to e−t/τ . The average radius also

in
reases in the 
ase of ICH for times larger than the typi
al 
ollision one, showing again

the in
rease of the outward parti
le �ux. The average energy rises for times larger than

10−3 s, showing the obvious e�e
t of plasma heating and the typi
al time s
ale in whi
h

the power absorption is relevant. The 
hange of the average squared velo
ity is, not

surprisingly, very similar to the energy one.

Also we 
al
ulate the toroidal and poloidal velo
ity pro�les (Fig. 3). We see that the

poloidal velo
ity does not 
hange be
ause it depends mostly on the ~E × ~B drift, and it is

not modi�ed in the system. On the other hand, vφ is strongly in�uen
ed by ICH, be
ause

if v2 grows while vθ is 
onstant, then vφ in
reases. This in
rement, fo
used on ρ ≃ 0,
is propagated radially via transport pro
esses.The evolution of the parti
le �ux pro�le

is plotted in Fig. 4, whi
h shows that this is always larger in the presen
e of heating,

espe
ially for t > 10−3 s, whi
h is the typi
al time s
ale for plasma heating to be relevant.

The steady state �ux is monotoni
, as 
orresponds to the absen
e of sour
es or sinks. The

heat �ux pro�le evolution (Fig. 5) is again monotoni
 in steady state (t = 5 · 10−2 s), but

the gradient in the 
entre of the devi
e is mu
h larger in the 
ase of ICH than in the one

without heating, sin
e the heat sour
e is lo
ated 
lose to ρ = 0.

We 
ompute the probability distribution fun
tion (v2 · f(v, φ)), in terms of v and φ (Fig.

6). We �nd that with a small ripple (1%) f(v, φ) does not depend on φ in any 
ase,

whi
h implies that the parallel transport is able to over
ome the lo
al heating produ
ed

by the antennae as well as the ripple e�e
ts. It is 
lear that the e�e
t of heating tends to

make the distribution fun
tion wider , rising its tail and 
reating an important number of



6 TH/P3-18

-1.5e-05

-1.0e-05

-5.0e-06

0.0e+00

5.0e-06

1.0e-05

1.5e-05

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

V
θ/

c

ρ

ICH

-4.0e-04

-3.0e-04

-2.0e-04

-1.0e-04

0.0e+00

1.0e-04

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

V
φ/

c

ρ

ICH
0.0e+00

2.0e-06

4.0e-06

6.0e-06

8.0e-06

1.0e-05

1.2e-05

1.4e-05

1.6e-05

v2 /c
2

no ICH
it 0
it 1
it 2
it 3
it 4
it 5
it 6

0.0

2.0

4.0

6.0

8.0

10.0

12.0

κ 

ICH
5/3

Figure 3: Iterations of the v2 pro�le (upper, left), Binder 
umulan (upper, right), poloidal

velo
ity (lower, left) and toroidal velo
ity (lower, right), measured in t = 5 · 10−2 s.
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Figure 5: Heat �uxes.

suprathermal ions. The Binder 
umulant, de�ned as κ := 〈v4〉/〈v2〉2, measures deviations

from the Maxwellian distribution (Fig 3). In the plasma without ICH, the 
umulant is

equal to 5/3 at every time, ex
ept in the outer plasma radius where an in
rease of fast

parti
les due to the transport is observed. The ICH plasmas show 
lear e�e
ts of heating

with a 
umulant larger than the Maxwellian value, with a lo
al maximum in the 
entre of

the devi
e and an in
rease 
lose to the plasma edge due to the e�e
t of fast ion transport.

4 Con
lusions

We have estimated for the �rst time the 
ombined e�e
ts of ion 
ollisional transport and

heating outside the frame of the linear approximation. To do that, we have developed

a nonlinear kineti
 method based on Langevin equations for transport and quasi linear

heating. We modify the ba
kground temperature with an iterative method, allowing a

real in
rement of the parti
le energy. This method makes possible the numeri
al solu-

tion, for any geometry and wave, of the 
ollisional transport in phase spa
e. The only

approximations are 
onsidering 
ollisional transport in a frozen ele
trostati
 potential and

assuming that wave-parti
le intera
tion is well des
ribed by quasi-linear theory. We have

parti
ularized our model to the geometry of a tokamak with ripple, avoiding for the mo-

ment the e�e
ts of more 
omplex geometries to 
on
entrate ourselves in the heat and

transport interplay. This 
omputer 
ode 
an be easily adapted to another geometries and

plasma pro�les, like stellarator geometries or the ITER one.
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Figure 6: Velo
ity probability distribution fun
tions, as a fun
tion of the velo
ity and the

toroidal angle without (left) and with ICH (right).
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