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Abstract. The high-β spherical tokamaks (ST), such as NSTX and MAST, are attractive fusion
devices for studying the physics of current drive by electron cyclotron (EC) waves. While ST
plasmas are overdense to conventional EC waves, electron Bernstein waves (EBW) can be used
to generate plasma currents. Besides providing better confinement, EBW driven current can
also help suppress neoclassical tearing modes. This paper examines the characteristic features
of EBW current drive. It is shown that the propagation and damping of EBWs and their
interaction with electrons in STs provides useful insight into the propagation and damping of
O waves and their interaction with electrons in ITER. The physics of current drive has also
many similar features. In theoretical and computational studies of current drive the interaction
of electron cyclotron waves with electrons is modeled by a quasilinear diffusion coefficient. The
usual approach has been to use a diffusion coefficient that is valid for a homogeneous plasma in
a slab geometry. Thus, it lacks the toroidal effects necessary for current drive in STs and ITER.
A new relativistic wave-particle diffusion operator in toroidal plasmas that includes spatial
and momentum transport due to RF waves has been derived. It is suitable for numerical
implementation and could explain the observed broadening of the current profile due to ECRF
waves. The diffusion operator is relevant for studies on heating and current drive by EC waves
in present day fusion devices and in ITER. The derivation and the final form of this diffusion
operator is discussed in this paper.

1. Introduction

The ordinary O wave and the extraordinary X wave in the electron cyclotron range
of frequencies (ECRF) have been successfully used for generating plasma current and for
modifying the current profile in many conventional tokamaks. In high-β spherical toka-
maks (ST), e.g., in NSTX and MAST. electron Bernstein waves (EBW) can be used for
the same purpose [1, 2, 3]. We carry out a fully relativistic analytical and computational
analysis of the characteristics of EBWs and their interaction with electrons for driving
plasma currents. We show that a study of EBWs in STs will provide detailed insights
into the physics of O wave propagation and its interaction with electrons in ITER.

A Fokker-Planck description of RF driven current depends on modeling the the inter-
action of RF waves with electrons. Toward this end, we derive the relativistic quasilinear
operator for momentum and spatial diffusion of electrons due to their interaction with
RF waves in non-axisymmetric toroidal plasmas. The plasma equilibrium is expressed
in terms of the magnetic flux coordinates of an axisymmetric plasma. The electron mo-
tion is treated fully relativistically and is expressed in guiding center coordinates using
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the action-angle variables of motion in an axisymmetric toroidal equilibrium. The non-
axisymmetry in the equilibrium due to magnetic field perturbations and the effect of RF
waves on electron motion are treated perturbatively. The magnetic field perturbations
can be due to magnetic islands as in neoclassical tearing modes. It is well-known that
relativity needs to be included in a proper description of the damping of EC waves [1, 4].
The relativistic generalization of the quasilinear operator is necessary for the interaction
of electrons with EC waves. Our study is a generalization of an earlier work by Kaufman
[5] and is in contrast to the Kennel-Engelmann [6] description of quasilinear diffusion
in a uniform plasma. We carry out the Lie perturbation technique to first order in the
perturbation parameters. The generalized quasilinear evolution equation is accurate to
second order in the perturbation parameters. The diffusion operator is time dependent
and describes resonant and non-resonant momentum space diffusion, and non-resonant
radial transport of electrons. The former leads to current generation in a plasma and the
latter to the broadening of the current profile. The final results are expressed in a form
that is suitable for numerical implementation.

2. Relativistic Effects in Wave Damping

We have developed a fully relativistic code R2D2 which solves for wave propagation
and damping of all waves in the electron cyclotron range of frequencies (ECRF) [1].
This code has been used in a number of studies on electron cyclotron waves and electron
Bernstein waves (EBW) [1, 7]. Results from R2D2 on the damping of the ordinary O waves
in plasmas which are ITER-like and the damping of EBWs in plasmas which represent
present day STs are discussed below.

In Fig. 1(a) we plot the imaginary part of n⊥, calculated from R2D2, as a function
of ω/ωce for the O wave in ITER-type of plasma conditions. Here n⊥ is the wave index
perpendicular to the magnetic field, (n‖ being the parallel wave index), ω is the wave
angular frequency, and ωce is the electron cyclotron angular frequency. The imaginary part
of n⊥ is a measure of the damping of the wave. In this figure we compare the relativistic
(solid red) and the non-relativistic (dashed blue) results. It is evident that the relativistic
results are significantly different from the non-relativistic results. In approaching the
cyclotron resonance from the high-field side (ω/ωce ≤ 1), the relativistic damping starts
to occur before the non-relativistic damping. In the approach to the resonance from the
low field side, relativity tends to narrow the deposition profile so that deposition starts
closer the cyclotron resonance. Overall, relativity tends to broaden the deposition profile
and reduce the maximum value.

The propagation and damping physics of O waves is being studied in present tokamaks.
However, an ST plasma is not a suitable candidate for O waves since the plasma is
overdense. At low harmonics the O wave is cutoff near the edge of the plasma while at
high harmonics the plasma is essentially transparent to the wave. Since EBWs do not
have density cutoffs and are well absorbed by electrons in the Doppler-shifted vicinity
of low order cyclotron resonances, they are well suited for ST plasmas [2] such as those
encountered in NSTX and MAST. In Fig. 1(b) we plot the imaginary part of k⊥ρe as a
function of ω/ωce for parameters relevant to a NSTX plasma. Here k⊥ is the perpendicular
component of the wave vector and ρe is the electron Larmor radius. The figure shows
the differences between the relativistic (solid red) and the non-relativistic (dashed blue)
results when approaching the resonance from the high field side. We find that, for EBWs
in a ST, relativity narrows the absorption profile when approaching the resonance from
the low field side, and broadens it for the high field side approach. In a high-β NSTX-
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Figure 1: (a) Imaginary-n⊥ for an O wave versus ω/ωce for ITER-type parameters with
ω/2π = 170 GHz, electron temperature Te = 10 keV, ωpe/ω = 0.75 (ωpe is the electron
plasma frequency), and n‖ = 0.1; (b) imaginary part of (k⊥ρe) for an EBW versus ω/ωce

for NSTX-type parameters with ωpe/ωce = 6, Te = 3 keV, and n‖ = 0.2.

type plasma, there is a dip in the magnetic field along the equatorial plane [2]. By an
appropriate choice of EBW frequency, the wave can approach the cyclotron resonance
either from the low field or from the high field for the same launching position. Thus, an
ST offers an extended test of waves in the EC range of frequencies.

In Fig. 2(a) we compare, as a function of the plasma temperature, the relativistic (solid
red) and the non-relativistic (dashed blue) values of the imaginary part of n⊥ for EBWs in
typical NSTX-type plasmas. From this figure it is evident that relativistic effects become
important for EBWs for temperatures above 1 keV. Since temperatures in this range can
be easily achieved in as ST, the dispersion characteristics of EBWs will provide useful
insight into the relativistic modifications to the damping of O waves in ITER.

3. Current Drive by Electron Cyclotron Waves

The primary role of EC waves in ITER will be to drive localized plasma currents.
The current drive physics depends on the momentum of the electrons in the distribution
function that interact with the EC waves. A measure of this interaction is the optical
depth of the EC waves. The optical depth can be determined from the linear theory of EC
wave propagation and damping [8]. In Fig. 2(b) we plot the momentum of the electrons,
normalized to the thermal momentum, as a function of the optical depth of EC waves.
The optical depth of X and O waves is around 10 (represented by ECW in the figure)
so that these waves interact with electrons near the thermal momentum. For EBWs the
optical depth is in the range 200 <∼ τn

<∼ 1000, so that EBWs interact with electrons in
the range 3 <∼ p‖/pte

<∼ 4. Thus, EBWs interact with electrons which are approximately
an order of magnitude more energetic than the electrons with which the O wave interacts
in present day tokamaks. If the plasma temperature in the region where EBWs damp
in an ST is 3 keV, the effective energy of the electrons with which the EBWs interact is
around 30 keV. In ITER the O mode will be interacting with electrons in this approximate
energy range. Thus, EBW experiments in a ST can provide insight into the physics of
the interaction of EC waves with highly energetic electrons.

The EBWs can drive plasma currents in a ST either through the Fisch-Boozer scheme
[9] or the Ohkawa scheme [10, 11]. The latter means of current drive is possible since,
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on the outboard side, a large fraction of the electrons in a ST are magnetically trapped.
Even though the Ohkawa current drive is not envisioned for ITER, experiments on a ST
can be useful in extending our understanding of the wave-particle interactions.

The code R2D2 has been coupled to a code LUKE [12] which solves or RF driven cur-
rent using a quasilinear diffusion operator. Some results on EBW current drive obtained
from this combination of codes have been discussed in [1].
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Figure 2: (a) Im(n⊥) versus electron temperature for NSTX-type plasmas with ω/ωce =
1.9, ωpe/ωce = 6, and n‖ = 0.2; (b) The parallel electron momentum normalized to the
thermal momentum versus the optical depth for the electron cyclotron waves. ECW
represents the X and O waves.

4. Quasilinear Theory for Momentum and Spatial Diffusion due to Radio
Frequency Waves

A theoretical description of the interaction of radio frequency (RF) waves with elec-
trons in tokamaks requires an accounting of the toroidal magnetic field geometry. For EC
waves, the description has to be relativistic so that the damping of the waves and their in-
teraction with electrons are described correctly. In this section we derive the quasilinear
diffusion operator for the interaction of RF waves with electrons using the Lie trans-
form perturbation technique. We use the magnetic flux coordinates of an axisymmetric
toroidal plasma, and the electron motion is expressed in terms of the canonical guiding
center variables. The electron motion is perturbed by RF waves and by non-axisymmetric
perturbations to the confining magnetic field. The magnetic perturbations could be due
to magnetic islands in a plasma.

The quasilinear action diffusion equation describes transport in momentum space and
in the radial spatial direction induced by magnetic perturbations and RF waves. The dif-
fusion tensor is non-singular and time-dependent. As a result of applying the perturbation
theory for finite time intervals we avoid the presence of the usual Dirac delta function.
The Dirac delta function results in a non-vanishing diffusion tensor only on a discrete
set of action surfaces which satisfy exactly a resonance condition [5]. The appearance of
Dirac’s delta function is a consequence of two assumptions. The first assumption is that
the RF waves are plane waves and hence occupy all space. For a finite beam size, as in
EC heating and current drive, this assumption is not valid. When the finite beam size for
the RF waves is properly taken into account the dependence on the resonance condition
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becomes non-singular. This is due to the resonance broadening effect [13]. The second
assumption is related to dynamical features of the electron motion. In particular, singu-
larities appear when the Markovian assumption for decorrelation of the particle orbits due
to perturbations, is invoked [5]. However, in many cases of interest, such a statistical as-
sumption do not necessarily hold. The underlying phase space of the system contains not
only chaotic areas but also islands of ”regular”, quasiperiodic motion. Consequently, the
Markovian assumption is violated and the dynamics of the particles have to be accounted
for properly.

In a general magnetic field configuration, consisting of nested toroidal magnetic sur-
faces, the covariant representation of the magnetic field is [14]

B = g(ψp)∇ζ + I(ψp)∇θ + δ(ψp, θ)∇ψp (1)

where ψp, ζ, and θ are, respectively, the poloidal flux, the toroidal angle, and the poloidal
angle. The functions g and I are related to the poloidal and toroidal currents, respectively,
and δ is related to the degree of non-orthogonality of the coordinate system. The magnetic
field lines are straight lines in the (ζ, θ) plane. The guiding center Hamiltonian [14] is

Hgc =
(
m2c4 + m2c2ρ2

‖B
2 + 2mc2µB

)1/2
+ Φ (2)

where ρ‖ = v‖/B, v‖ is the component of v along B, m is the mass of the electron, µ is
the magnetic moment, and Φ is the electrostatic potential. The two sets of canonically
conjugate variables are (Pθ, θ) and (Pζ , ζ) [14], where

Pθ = ψ + ρ‖I, Pζ = ρ‖g − ψp (3)

Here ψ, the toroidal flux, is given by dψ/dψp = q(ψp) with q(ψp) being the safety factor.
Note that ψp and ρ‖ are functions of Pθ and Pζ only. The third set of canonically conju-
gate variables is (µ, ξ), with ξ being the gyration angle. For an axisymmetric magnetic
field the three-degree of freedom system (2) has three independent conserved quantities
(µ, Pζ ,W ), and the particle motion is completely integrable. The Hamiltonian describes
magnetically trapped particles moving in banana orbits, and passing particles circulat-
ing in the toroidal direction. An action-angle transformation can be used to eliminate θ
from the Hamiltonian. A new action P̂θ where P̂θ =

∮
Pθ(θ; µ, Pζ ,W )dθ along with the

canonical transformation is obtained from the generating function S(ξ, ζ, θ; µ̂, P̂ζ , P̂θ) =

ξµ̂ + ζP̂ζ +
∫ θ

0
Pθ(θ

′; µ̂, P̂ζ , P̂θ)dθ′. The hatted variables are the new action-angle variables

with µ̂ = µ and P̂ζ = Pζ . We will use the new action-angle variables and drop, without
leading to any confusion, the hat over this variable set.

The non-axisymmetric magnetic perturbations have the form Ã = aB with a(ψp, θ, ζ) =∑
m1,m2

am1,m2(ψp)e
i(m1θ+m2ζ). Such perturbations modify the parallel canonical momen-

tum ρc = ρ‖ + a [14]. The scalar and vector potentials corresponding to RF wave fields

are represented in an eikonal form Φrf (x, t) = Φ̃rf (x)eiΨ(x,t), Arf (x, t) = Ãrf (x)eiΨ(x,t)Prf

where Φ̃ and Ã are amplitudes of the scalar and vector potentials, respectively, Ψ is the
phase, and Prf is the wave polarization vector. The local wave vector k and the angular

frequency ω of the wave fields are given by k(x, t) = ∇Ψ(x, t), ω(x, t) = −∂Ψ(x,t)
∂t

.
To second order in the ordering parameters ε (RF wave perturbations) and λ(∼ ε)

(non-axisymmetric magnetic perturbations) H = H0+εH1+ε2H2, where H0 = mc2Γ0+Φ
and

H1 = − 1

Γ0

(
ρcBb̂ + (2µB)1/2ĉ

)
·Arf + Φrf − λ

ε

m

Γ0

ρcB
2a (4)
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H2 =
1

2mc2Γ0

[
c2A2

rf −
1

Γ2
0

{(
ρcBb̂ + (2µB)1/2ĉ

)
·Arf

}2
]

+
λ2

ε2

B2

2c2Γ2
0

(
1− ρ2

cB
2

c2Γ2
0

)
a2 +

λ

ε

aB

Γ0

b̂ ·Arf (5)

The unit vector b̂ is along the axisymmetric magnetic field, â and ĉ are perpendicular to
b̂ (â = b̂× ĉ) and gyrating with the particle, and Γ0 = (1 + ρ2

cB
2/c2 + 2µB/mc2)1/2.

From the Lie transform perturbation theory [15], the first order Lie generator w1,
obtained from the solution of the equation ∂w1/∂t+[w1, H0] = K1−H1 by setting K1 = 0,
is w1 = − ∫ t

t0
H1(J,θ, s)ds where J = (Pθ, Pζ , µ) and θ = (θ, ζ, ξ). The integration is along

the orbits of the unperturbed, integrable, Hamiltonian H0, and are given by J(s) = const.
and θ(s) = θ(t) + ωθ(s− t) with ωθ = ∂H0/∂J. The resulting w1 is

w1 =
∑

n1,n2,l

Gn1,n2,l(J)eiNn1,n2,l·(θ−ωθt) e
i(Nn1,n2,l·ωθ−ω)t − ei(Nn1,n2,l·ωθ−ω)t0

i(Nn1,n2,l · ωθ − ω)

+
∑

n1,m1,m2

Fn1(J)am1,m2(J)eiMn1,m1,m2 ·(θ−ωθt) e
iMn1,m1,m2 ·ωθt − eiMn1,m1,m2 ·ωθt0

i(Mn1,m1,m2 · ωθ)
(6)

where Nn1,n2,l = (n1 + kθ, n2 + kζ , l) and Mn1,m1,m2 = (n1 + m1,m2, 0). The first sum
includes resonance between the RF waves and the particles and depends on the three
angles. The second sum includes resonance between the magnetic perturbations and the
particles and depends on the two angles θ and ζ. This form is derived from the Fourier
series representation of the first order Hamiltonian H1 in Eq. (4)

∑
n1,n2

Gn1,n2(J)ei(n1θ+n2ζ) =

[
(1/Γ0)Ãrf (X)

(
ρcBPrf‖Jl + (2µB)1/2

(
P+

rfJl−1 + P−
rfJl+1

))− Φ̃rf (X)
]
eikψpψp ,(7)

∑
n1

Fn1(J)ein1θ =
m

Γ0

ρcB
2 (8)

where the polarization vector has been decomposed into one parallel (Prf‖) and two
counter-rotating circular polarizations (P+

rf , P
−
rf ), and Jl = Jl(k⊥ρ) is the l−th order

Bessel function. Both sums in Eq. (6) include a functional dependence on the actions of
the form

R(Ω; t, t0) =
eiΩt − eiΩt0

iΩ
=

∫ t

t0

eiΩsds (9)

This function is smooth and localized around Ω = 0. It indicates a resonance between
the particle motion and the perturbations. For long times limt→∞,R(Ω; t,−t) = 2πδ(Ω),
where δ(Ω) is the Dirac delta function commonly appearing in quasilinear theory [5].

The evolution of any function f(z) of the phase space variables over an infinitesimal
time interval [t0, t0 + ∆t] is

f (z(t0 + ∆t; t0), t0 + ∆t) = T (z0, t0)SK(t0 + ∆t; t0)T
−1(z0, t0)f (z0, t0) (10)

where T = e−L, Lf = [w, f ]. As a result of applying the canonical perturbation theory for
finite time intervals [t0, t], one can easily show that wn(z0, t0) = 0 . Thus, T (z0, t0) = I.
Furthermore, we have chosen Kn = 0 for n = 1, 2. Then the time evolution of SK is
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given by the H0, i.e., by integrating along unperturbed orbits SK = SK0 = SH0 . Upon
taking the limit ∆t → 0 we obtain ∂f(z, t)/∂t = ∂ [T−1 − I] (z, t)/∂tf(z, t). For the case
where f(z) is the distribution function, this equation is an approximation, up to the same
order as T−1, of the original Vlasov (Liouville) equation. For a function F (J) which is an
average of f over the angles, F (J) = 〈f(θ,J)〉θ we have

∂F (J, t)

∂t
=

∂ 〈[T−1 − I](z, t)〉θ
∂t

F (J, t). (11)

To second order in ε we have T−1 − I = L1 + (1/2)L2 + (1/2)L2
1 with LnF = [wn, F ]

[15]. Upon integration by parts, and using the fact that the dependence on all the angles
is periodic, we find that < LnF (J) >θ= 0 for n = 1, 2 and < L2

1F (J) >θ= ∇J · [<
(∇θw1)

2 >θ ·∇JF (J)]. An important point emerges from these equations. The angle-
averaged operators that are needed in the evolution equation (11) can be calculated up
to second order in the perturbation parameter using results from first order perturbation
theory, namely w1 [16]. Then the evolution equation (11) becomes

∂F (J, t)

∂t
= ∇J · [D(J, t) · ∇JF (J, t)] , where D(J, t) =

1

2

∂
〈
(∇θw1)

2〉
θ

∂t
(12)

is the generalized quasilinear tensor. It can be shown that the first order momentum
variation can be written as < (∆J)2 >θ=< (∇θw1)

2 >θ, from which we find that D(J, t) =
lim∆t→0 < (∆J)2 >θ /2∆t corresponding to the common definition of the quasilinear
diffusion tensor. The evolution equation (12), can be transformed to the physical variables
P = (ψp, v‖, v⊥) describing particle transport, heating, and current drive through the
variation of the distribution function with respect to (ψp, θ, ζ), v⊥, and v‖, respectively.

5. Conclusions

The implication of the results presented in this paper is as follows. We can study
the importance of relativistic effects on EC wave propagation in present day STs. The
relativistic modifications to the propagation and damping of EBWs in STs will provide
an insight into the effect of relativity on O wave propagation and damping in ITER. The
ECRF waves in ITER will be used for stabilizing the neo-classical tearing mode. For
this to be accomplished successfully we need to account for any changes in the spatial
location of wave damping. The EBWs in STs will damp on electrons whose energies
are similar to those that will interact with O waves in ITER. The O waves and EBWs
interact with electrons via the cyclotron resonance interaction. Consequently, we can
study the interaction physics of EC waves at high ITER-like temperatures in present day
ST plasmas.

We have also derived a relativistic operator for momentum and spatial diffusion of
electrons due to RF waves and non-axisymmetric magnetic field perturbations. For EC
current drive the relativistic treatment is necessary. An important role of EC current drive
is to control the growth of the neoclassical tearing mode (NTM). The non-axisymmetric
magnetic field perturbations included in the diffusion operator can be due to magnetic
islands as for NTMs. Furthermore, the quasilinear operator is time dependent and does
not have the singular delta function dependence on the particle and wave phase velocities
as encountered in previous papers. Thus, the diffusion operator can be more easily im-
plemented in a numerical code. Even though we have evaluated a flux-surface averaged
quasilinear operator it is not necessary to do so. The steps preceding the flux surface av-
eraging include the dependence of the quasilinear operator on the poloidal angle. So our
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formalism leads to a more general diffusion operator than in previous publications. The
spatial dependence of the diffusion operator gives the effect of RF waves on the spatial
diffusion of electrons in the radial direction. Consequently, RF induced broadening of the
current profile is included in the operator.

This work is supported by DOE Grants DE-FG02-91ER-54109 and DE-FG02-99ER-
54521, and by Association EURATOM, Hellenic Republic.
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