Investigation of Steady-State Tokamak Issues by Long Pulse Experiments on Tore Supra

G. Giruzzi, on behalf of the Tore Supra Team

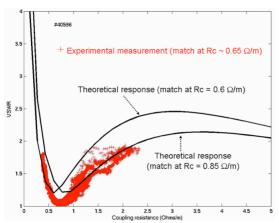
CEA, IRFM, F-13108 St. Paul-lez-Durance, France.

e-mail contact of main author: gerardo.giruzzi@cea.fr

Abstract. The main results of the Tore Supra experimental programme in the years 2007-2008 are reported. They document significant progress achieved in the domain of steady-state tokamak research, as well as in more general issues relevant for ITER and for fusion physics research. Three areas are covered: ITER relevant technology developments and tests in a real machine environment, tokamak operational issues for high power and long pulses, and fusion plasma physics. Results presented in this paper include: test and validation of a new, load-resilient concept of ICRH antenna and of an inspection robot operated under ultra-high vacuum and high temperature conditions; an extensive experimental campaign (5 h of plasma) aiming at deuterium inventory and carbon migration studies; real-time control of sawteeth by ECCD in the presence of fast ion tails; ECRH-assisted plasma startup studies; dimensionless scalings of transport and turbulence; transport experiments using active pertubation methods; resistive and fast-particle driven MHD studies. The potential role of Tore Supra in the worldwide fusion programme before the start of ITER operation is also discussed.

1. Introduction

Twenty years after the start of its operation (April 1988), Tore Supra is still the only large tokamak fully equipped for steady-state operation, i.e., combining superconducting magnetic coils, actively cooled plasma facing components and non-inductive current drive capability. Its primary mission, i.e., the investigation of physics and technology issues of steady state tokamak operation, retains all its scientific interest and relevance to the fusion programme. After the attainment of the symbolic target of discharges with 1 GJ of injected energy (> 6 min duration) [1], the following step has been the systematic increase of the injected power (~ 10 MW), on shorter discharges (~ 20-30 s, but still significantly longer than the current redistribution time) [2]. This phase allows the exploration of an operational domain of the highest interest for ITER and reactor applications: the combined use of ICRH (Ion Cyclotron Resonance Heating) and LHCD (Lower Hybrid Current Drive) systems at significant injected energy levels poses specific problems of antenna-plasma edge interactions [3] that can presently be fully tackled on Tore Supra only. The bonus of this type of experiments is related to the simultaneous presence of electron and ion tails in plasmas at $T_i \sim T_e$, which allows the investigation of various ITER-relevant fusion physics subjects. Nevertheless, the systematic exploitation of Tore Supra for long pulses and at high power level in the last few years has revealed growing limitations of the power that can be successfully coupled to the plasma. These limitations manifest themselves as a steadily increasing disruptivity of discharges of the same type, which is believed to be related to the formation of carbon deposits on the plasma facing components (PFC). The problem of high power, long pulse operation is therefore tightly related to another ITER-relevant subject that constitutes a major part of the Tore Supra scientific programme: erosion and redeposition processes on PFC and the associated deuterium retention [4]. This has been the subject of a specific experimental campaign in 2007.


This work reports the main achievements of the Tore Supra programme in the last two years. Significant results have been obtained in three areas: ITER relevant technology developments and tests in a real machine environment, tokamak operational issues for high power and long pulses, and fusion plasma physics. The potential role of Tore Supra in the worldwide fusion programme before the start of ITER operation will also be discussed.

2. Technology Developments

ITER-like antenna. ICRH is one of the two main heating systems of ITER. In this prospect, the main challenge is the development of ICRH antennas compatible with a reactor environment and resilient to large perturbations of the plasma edge density (especially

ELMs). An ITER-like prototype ICRH antenna for Tore Supra has been developed since 2003 [5] and extensively tested in the 2007 experimental campaign. The design of this prototype is based on the conjugate-T concept proposed for ITER [6] to deal with fast loading perturbations. The prototype launcher consists of two Resonant Double Loop (RDL) antennae arranged toroidally. Compared to the "conventional" RDL circuit, this RF circuit has the advantage that the antenna sensitivity at large variations of the resistive part of the load is lower.

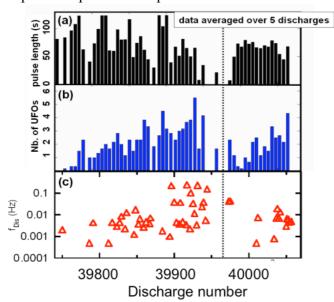
The experimental phase on plasma has followed four major lines: (1) set-up of matching points on plasma and qualification of the numerical model and matching algorithm; (2) study of the load resilience properties of the system, using edge density perturbations

Fig. 1: Shot 40596: VSWR as a function of the coupling resistance: experimental data from a single discharges (symbol: +); electrical simulation (bold lines).

conditions for the generator, the ITER-like antenna couples its power to the plasma without interruption [7]. The coupling properties of the antenna have been compared with the electrical models (RF circuit calculations that include 3D modelling for the complex

structures). During a single shot the plasma position varies over a large range (60mm), and the Voltage Standing Wave Ratio (VSWR) is plotted against the coupling resistance in Fig. 1. The shot covers the low and the high parts of the R_c value, respectively. The comparison with the expected computed behaviour of the ITER-like antenna appears extremely satisfactory. These results represent significant milestone on the way towards future integration of ICRH launchers on ITER. The next step is the validation of the same concept on a larger scale and with an ELMy plasma on JET [7], which is presently underway.

produced by pellet or Molecular Beam Injection (SMBI); (3) comparison of the ITER-like prototype with the classical RDL antennas, regarding the sheath potentials and Faraday Screen interaction with spots, LHCD launchers, quick variation of plasma conditions; (4) investigation of the power limits of the launcher [7]. The most striking demonstration of the resilience properties of the antenna has been obtained by using SMBI to produce fast density perturbations on the injected power, coupling resistance R_c and reflected power, on both the ITER-like and a conventional antenna. On the classical RDL antenna, any of the SMBI injections triggers the safety system switching the applied power off, whereas in the meantime, and with identical safety


Fig. 2: AIA inside Tore Supra

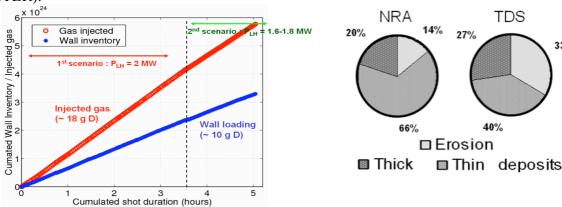
Articulated Inspection Arm. A very important issue for long pulse operation and for ITER is the follow-up of the inner components degradation, with thorough visual inspection (without breaking the machine vacuum) as a first step. For this purpose, an articulated inspection arm (AIA) has been developed, to demonstrate the feasibility of an in-vessel remote handling inspection carrier, with limited payload (10 kg) [8]. The AIA robot is an 8-meter long, multi-link carrier composed of 5 identical modules of 160 mm diameter with two electrical joints. The robot is moved along its support with an additional linear joint called the deployment system. The size of the AIA robot demonstrator is similar to what could be used in ITER. The operating

conditions are also ITER relevant, with ultra-high vacuum and 120°C temperature compatibility, however, interventions under magnetic field are not possible with the implemented technologies. After several experiments on a dedicated test facility, the robot has been installed on Tore Supra and equipped with a high definition CCD camera for PFCs visual inspection (Fig. 2). The viewing system is cooled with Nitrogen gas in order to keep the embedded electronic temperature below 60°C. The tests of deployment in Tore Supra, under ultra-high vacuum (1.4 10⁻⁵ Pa) and at a temperature of 120° have been performed in September 2008. The arm has been fully unfold in the equatorial plane, with additional movements upwards (inspection of an IR endoscope shutter) and downwards (close inspection of the toroidal limiter). These tests [9] have been successful and have demonstrated that previous baking of the arm at 200° efficiently limits outgassing during the deployment inside the machine. After the deployment, normal plasma operation has been possible without any particular conditioning.

3. Operational Issues

Deuterium Inventory. In-vessel tritium retention is a crucial issue for ITER since a simple extrapolation of present measurements shows that the limit of 350 g set by nuclear

Fig. 3: Pulse duration (a), number of UFOs per discharge (b) and disruption frequency (c) vs discharge number. The vertical line indicates the change in plasma scenario.

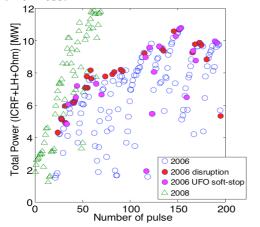

licensing could be reached in 50 to 100 nominal discharges. However, although the general trend is well established and observed in many devices, the underlying process is not clearly identified and rates from retention deduced integrated particle balance (~10-20% of the injected gas, >30% in Tore Supra) are significantly larger than those estimated from post-mortem analysis of the PFCs (~3-4%) [10]. Comparing these two estimates is difficult, since the former is generally based on particle balance calculations for a limited number of discharges, whereas the latter integrates the whole plasma history of the components. To clarify where the missing deuterium is trapped, the only way is thus to load the wall with deuterium in a controlled discharge scenario until its inventory is known with a high enough accuracy from integrated particle balance, and then

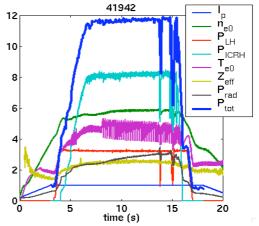
to dismantle some of the PFCs for analysis. Such a study was undertaken on Tore Supra, in three phases: a dedicated campaign to load the PFCs with deuterium, the dismantling of a toroidal limiter sector to extract selected samples, and then an extensive analysis programme on the samples, in collaboration with European partners in the frame of the European Plasma Wall Interaction Task Force [11, 12].

At the start of the experiment, the vessel was carbonised, then boronised in order to mark the beginning of the experiment by a 13 C-layer, easily identifiable in subsequent analysis, and for initial wall conditioning. A robust scenario was designed, allowing plasma duration long enough (~ 2 min) for permanent retention to be much larger than transient one, namely: average density $< n_e > 1.5 \cdot 10^{19} \, \text{m}^{-3}$, LH power $P_{LH} = 2$ MW, plasma current $I_p = 0.6$ MA and magnetic field $B_T = 3.8$ T. Ten days of operation, distributed over three weeks, were devoted to the D-loading of the wall. Neither other experimental programmes, nor wall conditioning were realised during this time. The main operational issue was linked to the appearance of UFOs (i.e., large particles with a high impurity content, detached from the wall, PFCs or antennas, and penetrating into the plasma), whose frequency increased

dramatically during the campaign, each one triggering a phase of plasma detachment followed by a disruption in a number of cases. This is shown in Fig. 3, where the number of UFOs per discharge is plotted vs discharge number, showing an almost linear increase and a correlated decrease of the plasma duration. After ~220 discharges, operation was so difficult and disruptions so frequent that it became necessary to modify the LH-power waveform, from a constant value to a continuous ramp, from 1.2 to 1.6-1.8 MW, the consequence of this limitation being a decrease of the plasma duration down to ~90s. The continuous increase of the UFO occurrence is believed to be related to the build-up of thick deposits in the private flux regions of the toroidal surface - in the immediate vicinity of the confined plasma - since the footprint of the plasma on the toroidal limiter remained unchanged during the whole experiment (~5 h of plasma, equivalent to approximately 1 year of normal operation).

The main results of particle balance are presented in Fig. 4, where the injected gas and the wall D inventory are plotted vs the cumulated discharge duration. A constant retention rate was measured (\sim 2.4 10^{20} D/s), with no sign of wall saturation, leading to a total increment of the wall inventory of \sim 3 10^{24} D (\sim 4 times the pre-campaign estimate). After dismantling a sector of the toroidal limiter (20° toroidal), 40 CFC-tiles (over a total number of 672 for the whole sector) - uniformly distributed over erosion, thin deposits and thick deposits zones - were extracted and sampled for analysis. Thermodesorption (TDS) and Nuclear Reaction Analysis (NRA) measurements of the D-content were performed. These measurements showed surface D-concentration of \sim 5% and \sim 20% in the eroded and coated zones, on a typical thickness of 25 to 40 μ m. As shown in Fig. 5, once extrapolated over the whole limiter, this corresponds to \sim 25% of the total inventory, widely determined by the coated zones. It follows that the retention process is dominated by codeposition, even if the relatively large amount and deep penetration of deuterium in the erosion zones is likely due to the high porosity of the CFC material. These results have of course a strong impact on the subsequent choices of detritiation techniques, at least for carbon-based PFCs (also present in ITER).

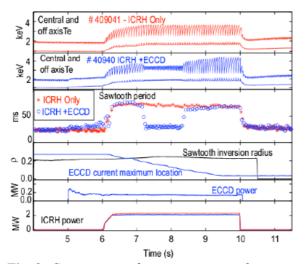

Fig. 4: Injected gas and wall D inventory vs cumulated discharge duration for the dedicated campaign.

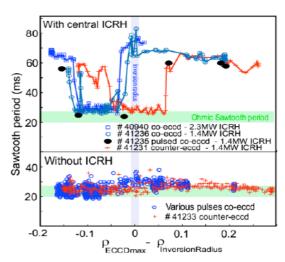

Fig. 5: Breakdown of the D-content in the different zones (thick deposits, thin deposits and erosion), as determined by Thermodesorption and Nuclear Reaction Analysis.

33%

High Power Issues. The last experimental campaigns have been particularly intense in terms of injected power, energy and accumulated plasma time (10 hours plasma time in both 2006 and 2007, with 65 GJ injected RF energy in 2006 and 40 GJ in 2007). Significant experience has been gained in the understanding of localised heat loads due to RF sheath effects and interaction of fast particles [3,13]. In addition to the previously discussed scenario with LH only, developed for D-retention studies, high power scenarios have also been explored, combining LHCD and ICRH, at higher plasma current and density ($I_P = 0.9 \text{ MA}$ and $n_e/n_{Gr} \sim 0.8$). This has resulted, e.g., in $\sim 10 \text{ MW}$ coupled for 26 s in repetitive discharges [13] during the 2006 campaign. However, as in the D-retention campaign, an increasing operational difficulty has emerged, limiting the high power and long pulse performance. The analyses undertaken suggest that the limitation is linked to the growth and flaking of re-

deposited carbon layers on the main plasma facing component. This type of operational limit encountered on Tore Supra could probably become a serious concern for next step devices, running repetitive discharges over long durations, leading to re-deposited layers of significant thickness.


Fig. 6: Total additional power vs number of pulses realised for a power increase phase in 2006 (circles) and in 2008 (triangles).


Fig. 7: time history of a 12 MW discharge, obtained after PFC cleaning. Powers are in MW, current in MA, density in 10^{19} m⁻³, temperature in keV

In order to understand the dynamics of these disruptive limits, more than 140 disruptions from the 2006 and 2007 campaigns have been analysed [14], using infrared (IR) imaging together with visible and ultraviolet (UV) spectroscopy of impurities (carbon, iron and oxygen). The IR images reveal in several cases the appearance of a small (~cm²) hot spot, clearly localised in a zone of thick carbon re-deposition (>100µm) on the main plasma facing component, the toroidal limiter. At the hot spot, the surface temperature increases by a few hundred °C, lasting several time frames (> 50 ms) until the plasma disruption. Ejection of flakes from the re-deposition zones can be evidenced by the IR as well as CCD cameras and is associated with the formation of a MARFE. The most likely mechanism is the continuous growth of the carbon deposits, as a result of over 44 hours accumulated plasma time since the installation of the toroidal limiter in 2000. If the deposits partially detach from the surface, the thermal resistance between the deposits and the actively cooled surface increases, thus heating the deposits even further. Eventually, flaking occurs as a result of inner thermal stresses. This mechanism, likely responsible for the new operational limit encountered, does not seem specific to C-based PFCs: it could be found for other types of deposited layers (e.g., Be), with bad thermal contact with the actively cooled PFC.

In order to have a conclusive test of this hypothesis, the carbon deposits on the PFCs have been completely removed during the winter shutdown 2007-2008. This was a complex intervention, lasting 10 days. It was performed by hand by four teams of two people, equipped with gas mask for protection against carbon dust inhalation, and using tungsten carbide scrapers and vacuum cleaners (~ 0.8 kg of dust has been recovered and is available for analysis). This thorough cleaning procedure had a dramatic impact on the operation of After ohmic restart, LH, then ICRH power increase phases have been performed (this took typically 4 operation days, including antenna conditioning on plasma discharges). After a boronisation, high power operation with combined LH and ICRH power has been undertaken – usually a very lengthy procedure in the presence of carbon deposits. This time, 9 discharges have been sufficient to attain a total power of 11 MW, without any disruption. In a subsequent day, this power level could be attained in 3 shots. No signs of the previously observed phenomenology (hot spot, flaking, MARFE, disruption) have been observed in all the restart and power increase phases. A comparison of this power increase phase with a typical one in the presence of carbon deposits (2006) is shown in Fig. 6. It appears that the power increase is much faster, due to the absence of disruptions and of UFOs. Note that the impurity content is globally very similar in the two campaigns, for similar discharges. As a result, no particular effort was required to obtain a discharge with nearly 12 MW of total heating power, for a duration of 10 s, very close to the maximum

available power on Tore Supra (Fig. 7). This result opens up optimistic prospects for the future power upgrade of Tore Supra. It also demonstrates the importance of PFC cleaning procedure (or of preventing the formation of deposits) for successful operation of long pulse tokamaks.

Fig. 8: Comparison of two consecutive shots – one with 2.3MW of ICRH and no ECCD and one with ECCD added.

Fig. 9: Sawtooth period versus distance between ECCD location and the inversion radius for co- and counter-ECCD. a) and b) shows the result with and without central ICRH

Real-time sawtooth control by ECCD. Fast ions – such as fusion produced alpha particles in future reactors or ICRH accelerated ions in present tokamaks - stabilise the sawtooth' instability, resulting in long sawteeth with large crashes, which are prone to trigger Neoclassical Tearing Modes (NTM). Thus NTMs may be avoided if short sawteeth can be maintained, even in the presence of significant fast ion pressure, and ECCD (Electron Cyclotron Current Drive) is foreseen to accomplish this function on ITER, by driving localised currents close to the q=1 surface and therefore changing the magnetic shear locally. On Tore Supra, experiments have been performed aiming, for the first time, at demonstration of ECCD destabilisation of sawteeth in the presence of fast ion tails produced by ICRH. These experiments include demonstration of co- and counter ECCD effects on the sawtooth period [15], as well as feedback control of the sawtooth period by moving the steerable mirrors of the ECCD antenna in real time [16], as foreseen in ITER. An example of the effect of ECCD on the sawtooth period is shown in Fig. 8. During the ICRH phase ($P_{ICRH} = 2 \text{ MW}$) of a 1MA discharge, co-ECCD is applied ($P_{ECCD} = 0.3 \text{ MW}$) at a toroidal injection angle of 28°, whereas the poloidal injection angle is continuously swept from -3° to -8° in order to move the driven current location through the q=1 surface. This results in a strong and abrupt decrease of the sawtooth period in a well defined time window. For comparison, it is interesting to consider the effect of counter-ECCD. Fig. 9 shows the sawtooth period as a function of the distance between the inversion radius and the peak of the ECCD deposition, for a number of discharges, similar to the one shown in Fig. 8, with both co- and countercurrent ECCD. Shortening of the sawtooth period is achieved with the ECCD current driven inside and outside the q = 1 surface, for co-and counter-ECCD, respectively. The lower panel of Fig. 9 also shows that the ECCD has very little effect on the sawtooth period in Ohmic plasmas. The abrupt switch of the sawtooth period leads us to conjecture that, in the presence of fast ions, other mechanisms in addition to the evolution of the shear at q=1 have to be invoked to explain the experimental results.

In the present set of experiments a simple closed loop controller for real time control of the sawtooth period was implemented [16]. Such a control will be required in future machines for sawtooth destabilisation to be a viable option for NTM avoidance. These experiments were successful in proving that the sawtooth period can be switched reliably between short and long sawteeth though they also highlighted the difficulty associated with the abrupt change in sawtooth period. If this phenomenon is universal – as it seems to be at

present - the control algorithms implemented on future tokamak devices have to take this into account and better physics understanding of this phenomenon would be very helpful for the success of such control schemes.

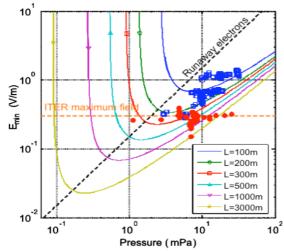
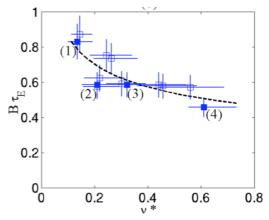
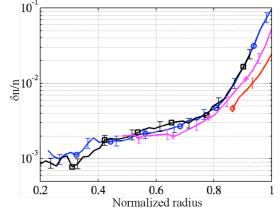


Fig. 10: applied electric field vs pre-fill pressure for a number of successful start-up attempts, both with and without ECRH assistance. Open squares correspond to ohmic startup, full circles to ECRH assisted startup. L is the toroidal connection length. Townsend curves are also shown.

ECRH-assisted start-up. pre-ionization and assisted start-up will be necessary in ITER [17]. The use of superconducting poloidal field coils will limit the available toroidal electric field (E_T 0.3Vm⁻¹), while the presence of toroidally continuous vacuum-vessel structures will increase the magnetic 'stray' field (axisymmetric poloidal fields normal to the toroidal field B_T) at breakdown. With this motivation. experiments aiming at ECRH-assisted start-up for electric field values close to the ITER limit have been performed on Tore ECRH at the 1st cyclotron Supra [18]. O-mode polarisation harmonic, presently foreseen in ITER) has been applied for typically 50 ms, using one or two 118 GHz gyrotrons ($P_{EC} = 300-500$ kW), at oblique injection (toroidal angle ~ 30°). The usual start-up voltage on Tore Supra is 25 V ($E_T = 1.7 \text{ Vm}^{-1}$) with

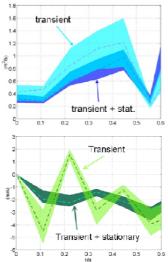

deuterium prefill pressure around 20 mPa. The minimum stray field value (B_{\perp}) in most of the vacuum vessel is lower than 5 mT, which gives toroidal connection lengths ($L = aB_T/B_{\perp}$) longer than 770 m. In these conditions, pre-ionisation was successfully achieved at the EC resonance location and ~30 kA of current was established in 10 ms. Successful plasma initiation has been obtained down to ~0.15 Vm⁻¹ at 7 mPa. ECRH-assisted start-up has also been systematically used at plasma restart after two machine shut-downs of several months, with major loss of conditioning due to various operations inside the vacuum vessel, including PFC cleaning. ECRH has demonstrated to be a very reliable and useful tool for plasma start-up in such difficult conditions [18]. A global plot of the successful start-up attempts at low loop voltage is presented in Fig. 10.

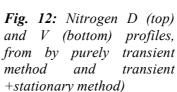

4. Physics Results

Dimensionless scalings. A substantial amount of experimental time has been devoted to physics-oriented investigations. The basic dependences of heat transport coefficients on dimensionless quantities (β , ρ^* and ν^*) have been investigated in L-mode discharges in which 2 of the 3 quantities were kept fixed, not only in their average values but also, as far as possible, in their radial profiles. The strong point of thiese studies is that turbulence measurements have been systematically performed in the same discharges, using two types of reflectometers (fast sweeping and Doppler) [19]. In this way, global scaling laws have been compared with those of the local transport coefficients and of the turbulence profiles. Results on the β scaling have been presented elsewhere [19, 20]; a very weak β dependence has been found on the global confinement time ($B_0\tau_E \propto \beta^{-0.2}$), on the heat diffusivity and on the density fluctuations $\delta n/n$ as well. More recently, experiments have been carefully performed by varying the dimensionless collisionality parameter, v^* , by a factor ~ 4.5 [21]. This has been accomplished by magnetic field variations in the range 2.4 - 3.87 T, connected with appropriate values of current and ICRH power, in order to keep q, β and ρ^* fixed. Density fluctuations $(\delta n/n)$, measured by both reflectometers, are found to increase significantly when increasing v^* in the outer part of the plasma, as illustrated in Fig. 11 for 4 discharges characterised by values of ν^* at mid-radius in the range 0.13 - 0.61. At the same time, the global confinement time degrades $(B_0\tau_E \propto \nu^{*-0.4})$. In contrast, there is no significant $\mathbf{OV}/3-3$

modification of $\delta n/n$ in the central region (r/a <0.7), which is consistent with the results of local transport analyses.

Perturbative transport studies. Transport studies using active perturbation methods


Fig. 11: Left: energy confinement time behaviour vs collisionality. Right: radial profiles of density fluctuations $\delta n/n$ for discharges with different v* (diamonds: v*~0.13; plus: v*~0.20; circles: v*~0.32, squares: v*~0.61, labeled as 1,2,3,4 in the left panel).


have also been done, for heat, particles and impurities. In particular, ECRH power modulations at low frequency (1 Hz) have been used to investigate the controversial subject of heat pinch, which has been observed in some experiments [22].

Perturbation techniques have also been used to study the dependence of impurity transport on the atomic number Z and on electron heating. Different metallic impurities (in the range Z = 13-32) have been injected in ohmic, sawtooth-free plasmas using laser blow-off techniques, and the associated response has been observed on the soft X-ray tomography and UV spectroscopy signals [23]. In ohmic discharges, the Z range has been extended by studying Nitrogen transport using Supersonic Molecular Beam Injection of small traces of the impurity [24]. This allows repeated injections in the same pulse, reducing the statistical uncertainties of the results, without increasing the injected amount of atoms above the trace level. Combination of these transient measurements with stationary gas puff injection (which

is used as a constraint on the pinch velocity to diffusion coefficient ratio V/D) has allowed further reduction uncertainty the of determination of both D and V, as shown in Fig. 12. The experimental diffusion has been found to be anomalous everywhere independent of Z; for nitrogen, the convection is inward. Modelling using the quasilinear gyrokinetic code QuaLiKiz [25] predicts that i) transport is governed by ITG turbulence even close to the plasma centre, ii) the turbulent V (matching the experimental profile shape) is inward, because the outward thermodiffusion term is weaker than the inward curvature term, iii) the Z dependence of V is weak in the Z range investigated.

SOL Physics. Various phenomena occurring in the Scrape

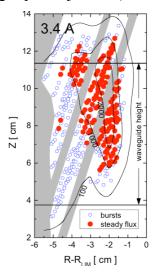


Fig. 13: 2D structure of the suprathermal electrons, measured by RFA

Off Layer of Tore Supra have also been investigated: ion temperature scaling [26], sheath potentials generated by RF antennae and superthermal electron acceleration [27]. To this end, highly reliable scenarios have been developed to allow, for example, detailed radial-poloidal mapping of the antenna-SOL interaction zones in a single shot, using a retarding field analyzer (RFA) or Mach/tunnel probe. Up to 14 reciprocations 1-2 cm inside the last closed flux surface (LCFS) at a rate of 1 Hz have been made in a single full power discharge. Real time feedback on edge safety factor is used to vary the magnetic connection between the probe and any of the antennae. The probe position itself is controlled by feedback on real time magnetic reconstruction to guarantee safe, reliable, and reproducible operation. This technique was used during LHCD experiments to provide direct measurements of the particle and power fluxes of suprathermal electrons emanating from the region in front of the LH grill. When one of the active waveguide rows of the LH launcher is magnetically connected to the RFA, a strong particle flux due to suprathermal electrons is observed. Surprisingly, the radial width of the suprathermal electron beam is rather large, at least about 5-6 cm (Fig. 13). Theory predicts that the high n_{\parallel} (parallel refractive index) waves (whose spectrum depends mainly on waveguide geometry) should be totally absorbed within at most 5 mm, and that the electron current should be stationary in time [28]. In reality, it exhibits a highly intermittent temporal evolution, with a characteristic burst rate in the 10 kHz range. The time scale of the intermittency is reminiscent of SOL turbulence. These measurements suggest that theory needs to identify a mechanism for power transfer from the main spectral peak to high refractive index at arbitrary distances from the grill, perhaps based on density perturbations. If such a mechanism is indeed at work, it could resolve the persistent inability of present theory to explain the strong increase of localized SOL heating with density. Furthermore, the existence of a power channel from low to high harmonics (such as parametric decay) could provide an alternative to toroidal upshift in the longstanding spectral gap problem.

MHD: double tearings and non-linear simulations. MHD instabilities specifically affecting steady-state discharges have been thoroughly inves-tigated on Tore Supra for several years. The most familiar MHD activity that is prompt to develop in hollow current density discharges is the Double-Tearing Mode, which is associated to a large variety of experimental observations. Indeed, this mode is seen to produce either off-axis temperature crashes, or to saturate at large amplitude with strong impact on the global confinement, in a

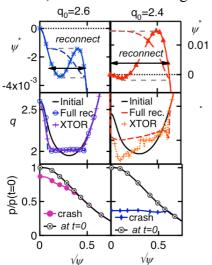


Fig. 14: Off-axis and global crash associated to the full reconnection of the Double-Tearing Mode. Reconstructed experimental profiles and XTOR simulations.

behaviour called MHD regime in Tore Supra [29]. Detailed comparison between experimental observations and predictions by the 3D non-linear MHD code XTOR [30] has then been made, in order to gain insight into the physics of these different regimes [31]. Non-linear simulations recover both the off-axis and the global crashes, as an effect of the different width of the reconnected region, in a way that is consistent with a full reconnection model (Fig. 14). Regimes with periodic relaxations or saturation are found to be related to the radial position of the q=2 surface: when moving outwards, the configuration goes from a Double-Tearing Mode which periodically q=2surface by producing reconnection, to a Single Tearing that saturates with a large island and a radial transport that prevents the core pressure to recover (Fig. 15). The agreement between experiment and simulation is reasonably good whenever the n=1 mode is unstable. However, it appears that successful non-inductive discharges without detectable n=1 mode cannot be reproduced if realistic transport coefficients are used in the

simulation. A more comprehensive MHD model implementing diamagnetic effects may provide a non-linear saturation mechanism at small island width.

The transition to the MHD regime has also been investigated by active perturbations of the current density profile by means of ECCD [32]. LHCD discharges at vanishing loop

 $\mathbf{OV/3-3}$

harmonic) supplied by two gyrotrons, delivering either coor counter-EC current at different radial locations (0.05 < ρ_{ECCD} < 0.52). The current profile evolution has been systematically reconstructed by means of the integrated modelling code CRONOS [33];

modes frequency and structure,

magnetic island width, could be

using

acquisition Electron Cyclotron

Emission (ECE) data.

as

well

evaluated

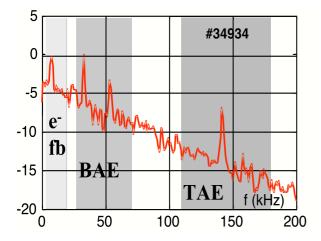

experimental

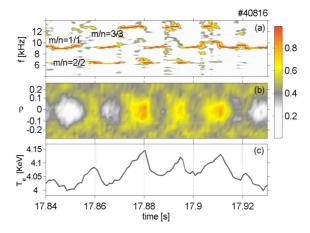
fast-

This

the

voltage have been perturbed by EC power ($P_{EC} \sim 700$ kW at 118 GHz, O-mode, 1st harmonic), supplied by two




Fig. 15: Non-linear simulation of q=2 sawtooth regime and (2,1) mode saturation with XTOR

analysis has shown that the dynamical behaviour of the q profile plays a critical role in the transition: discharges with very similar q profiles evolve towards the MHD regime if the q profile is shrinking, i.e., if the intersections with a given rational surface get closer. This property could be the basis to develop a scheme to prevent the transition to the MHD regime, possibly within a feedback control loop.

MHD: fast ion and electron modes. Owing to the presence of fast electron and fast ion tails in high power discharges, MHD instabilities associated with fast particles are systematically observed by X-mode reflectometry, fast ECE and correlation ECE. The combination of LHCD and ICRH allows fine tuning of q profile and fast ion populations, which has allowed studies of the radial profile of various modes [34]. It is found that the modes excited cover a wide frequency range from few kHz up to 200 kHz, as shown in Fig. 16. Electron fishbones have been observed in LHCD plasmas below 20 kHz. Modes around 50 kHz have been identified as Beta Alfvén Eigenmodes (BAEs) [19]. Toroidal-Alfvén-Eigenmodes (TAEs) are also observed in plasmas with ICRH [35,36]. The frequency range 30-50 kHz corresponds to the acoustic frequency. In this domain, both Geodesic Acoustic Modes (GAMs) and BAEs are expected. However, density perturbations associated with GAMs are predicted to vanish in the equatorial plane, whereas such perturbations are clearly measured there by reflectometry. It is found that the experimental mode frequency follows the BAE dispersion relation. Also the excitation threshold is found to be in reasonable agreement with the experimental observations.

In LHCD discharges, coherent modes at frequencies between 3 and 20 kHz are observed with ECE and reflectometry diagnostics [37]. The mode radial structure and parity are determined using fast ECE acquisitions. Modes are usually localized around r/a~0.2 and exhibit an odd parity with respect to the magnetic axis. Information on the q profile is obtained from reconstructions by the CRONOS code [33], using the Hard X-ray measurements to constrain the LH absorption profile. Information on the toroidal mode structure is provided by correlating reflectometry and ECE diagnostics located 60° apart in the equatorial plane. The evolution of the MHD stability when varying the LH power has been studied. Two classes of modes have been identified. The first class is characterized by a frequency range 8-10 kHz, consistent with an estimate of the precession frequency for barely trapped fast electrons. Hence these modes have been identified as precessional electron fishbones [38]. The second category of modes, whose frequency is around 2-4 kHz, are likely diamagnetic electron fishbones, since their frequency follows the thermal electron temperature and not the suprathermal energy. In the presence of precessional fishbones the electron temperature exhibits an oscillating behavior ($\Delta Te/Te \sim 1\%$) which seems strongly related to the discontinuous evolution of the mode frequency (Fig. 17). This observation could be at the root of new interpretations of non-linear temperature oscillations first detected in Tore Supra during long pulses [39]. For large enough LH power, diamagnetic electron fishbones take over and the electron temperature oscillation disappears. In this regime, when increasing LH power, a frequency rise is observed, in agreement with the theory.

Fig. 16: Example of high frequency modes spectrum observed with reflectometry $(r/a \sim 0.3)$ in a LH+ICRH discharge.

Fig. 17: (a) Spectrogram of detected modes.(b) 2D-surface representing the evolution of the electron temperature $T_e - \langle T_e \rangle$. (c) Central electron temperature time trace

5. Conclusions and Prospects

The peculiar complexity of the physics of non-inductive plasmas opens up several domains of additional studies and interesting physics problems, even after twenty years of efforts. The growing importance of this subject for ITER (and even more for DEMO) urges Tore Supra on to pursue investigation in this domain with a high priority. The scientific programme of Tore Supra is now close to the beginning of a new phase. Significant progress will be made possible after the LH power upgrade foreseen for 2009-2010 (CIMES project [40]). Now that the key role of PFC cleaning on plasma disruptivity and high-power operation has been understood and demonstrated, this power upgrade can be looked at with enhanced optimism. With a cw LH power in excess of 6 MW, it will be possible to run the $V_{loop} = 0$ discharges at significantly higher plasma current and/or density. Increase in current implies a proportionally higher global energy confinement, whereas increase in density will allow simultaneous coupling of IC waves at high power level. In this parameter range, the LH waves are expected to be absorbed more off-axis and the global confinement to increase, because of the increased extension of the reversed shear region. The establishment of a LHEP regime [41] at significantly higher β should increase the bootstrap contribution and probably favour improved confinement on a broader plasma region. At the same time, the nature of MHD phenomena will change, owing to the increasing role of pressure, and the overall picture and detailed shape of the MHD stability domains is likely to be modified. The regimes of improved confinement (LHEP [41]), poor stability (MHD regime [29]) and nonlinear oscillating behavior (O-regime [39]) being very close and even inextricably connected in parameter space, detailed experimental studies, first-principle physics understanding and development of active control techniques will be subjects of intense activity for Tore Supra with the upgraded heating systems configuration.

In the prospect of the ITER steady-state operation phase and of DEMO, it will of course be necessary to address at least the most urgent of these physics issues in machines equipped for steady-state operation, with divertor configuration and a high degree of flexibility. Four tokamaks of this type (EAST, KSTAR, SST1 and JT60-SA) have been or are being built in Asia, however, it will take several years before they can reach full performance steady-state operation. Tore Supra is a strategic asset for the international fusion programme to bridge this gap. In order to fully exploit the machine potential for steady-state scenario exploration, a flexible current profile control system has been identified as the most useful further enhancement beyond the CIMES project. An ECCD system of 4-5 MW would be a relatively modest but decisive upgrade which would allow Tore Supra to explore the physics of steady-state scenarios in the next years, before the start of ITER operation. Challenging issues, such as the current alignment problem [42] and the real-time control of fully non-

inductive plasmas in the presence of strong non-linearities [43] could be addressed by Tore Supra in such an upgraded configuration.

Acknowledgements. This work, supported by the European Communities under the contract of Association between EURATOM and CEA, was carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

- D. Van Houtte et al., Nucl. Fusion **44** (2004) L11.
- [2] G. Giruzzi et al., Plasma Phys. Contr. Fusion 47 (2005) B93.
- [3] L. Colas et al., Plasma Phys. Contr. Fusion 49 (2007) B35.
- E. Tsitrone et al., J. Nucl. Mat. **363-365** (2007) 12.
- [5] K. Vulliez et al., Fus. Eng. Des. **66-68** (2003) 531.
- [6] G. Bosia et al., Fus. Sci. Techn. **43** (2003) 153.
- K. Vulliez et al., Nucl. Fusion 48 (2008) 065007; this conference, paper FT/4-5Rb.
- L. Gargiulo et al., Fus. Eng. Des. 82 (2007) 1996.
- M. Houry, this conference, paper FT/P2-18.
- [10] T. Loarer et al., Nucl. Fusion 47 (2007) 1112.
- [11] B. Pégourié et al., 18th PSI Conf. (2008); J. Nucl. Mat., to be published.
- [12] E. Tsitrone et al., this conference, paper EX/9-1.
- [13] A. Ekedahl et al., in Radiofrequency Power in Plasmas (Proc. 17th Topical Conf., Clearwater, Florida, 2007). AIP Conference Proceedings 933 (2007) 237.
- [14] A. Ekedahl et al., this conference, paper EX/P4-2.
- [15] M. Lennholm et al., submitted for publication.
 [16] M. Lennholm et al., Proc. 15th Joint Workshop on ECE and ECRH, Yosemite, (2008)
- [17] Y. Gribov et al., Nucl. Fusion 47 (2007) S385.
- [18] J. Bucalossi, Nucl. Fusion **48** (2008) 054005; this conference, paper EX/P6-12.
- [19] R. Sabot et al., Plasma Phys. Contr. Fusion **48** (2006) B421.
- [20] M. Chatelier et al., Nucl. Fusion 47 (2007) S579.
- [21] T. Gerbaud et al., submitted for publication.
- [22] X.L. Zou et al., in Controlled Fusion and Plasma Physics (EPS, Geneva, 2008), D4.004.
- [23] T. Parisot et al., Plasma Phys. Contr. Fusion **50** (2008) 055010.
- [24] R. Guirlet et al., in Controlled Fusion and Plasma Physics (EPS, Geneva, 2008),
- [25] C. Bourdelle et al., Phys. Plasmas **14** (2007) 112501.
- [26] M. Kocan et al., J. Nucl. Mat., to be published.
- [27] J.P. Gunn et al., this conference, paper EX/P6-32.
- [28] P. Jacquet et al., Phys. Plasmas **6** (1999) 214.
- [29] P. Maget et al., Nucl. Fusion 44 (2004) 443.
- [30] H. Lütjens and J.F. Luciani, J. Comput. Phys. **227** (2008) 6944.
- [31] P. Maget et al., Phys. Plasmas 14 (2007) 052509; Nucl. Fusion 47 (2007) 233; this conference, paper EX/P9-9.
- [32] F. Turco et al., Plasma Phys. Contr. Fusion **50** (2008) 035001.
- [33] V. Basiuk et al., Nucl. Fusion **43** (2003) 822.
- [34] R. Sabot et al., this conference, paper EX/P8-9.
- [35] V.S. Udintsev et al., Plasma Phys. Contr. Fusion, 48 (2006) L33.
- [36] M. Goniche et al., Fusion Sci. Techn. **53** (2008) 88.
- [37] A. Macor et al., submitted for publication.
- [38] F. Zonca et al., Nucl. Fusion 47 (2007) 1588.
- [39] G. Giruzzi et al., Phys. Rev. Lett. **91** (2003) 135001.
- [40] B. Beaumont et al., Fus. Eng. Des. **56-57** (2001) 667.
- [41] G.T. Hoang et al., Nucl. Fusion **34** (1994) 75.
- [42] J. Garcia et al., Phys. Rev. Lett. **100** (2003) 255004.
- [43] J.F. Artaud et al., in *Contr. Fusion and Plasma Physics* (EPS, Geneva, 2008), P5.068.