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Theory and Observations of magnetic islands
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Abstract. Islands are a ubiquitous feature of magnetically confined plasmas. They arise as the result
of plasma instabilities as well as imperfections in the coils. Effective techniques have been developed
for keeping their width small. Even thin islands, however, are observed to have nonlocal effects on the
profiles of rotation and current. This has stimulated interest in using magnetic islands to control plasma
transport. They are also of interest as a tool to improve our understanding of microscopic plasma dy-
namics.

1. Introduction

A goal shared by most magnetic confinement concepts is to realize a configuration con-
sisting of simply-nested magnetic surfaces encircling a closed field line, the magnetic axis.
In practice, small departures from this ideal configuration give rise to magnetic islands,
which are tubes of flux with their own private magnetic axes. Their primary significance is
that heat can flow rapidly around them by following the field lines. In the edge, magnetic
islands serve a useful function by diverting the field so as to separate the hot plasma in
the confinement volume from the material surfaces of the device. In the core, by contrast,
magnetic islands represent a loss of confinement volume.

The last few years have seen the successful development of RF current-drive techniques
for reducing the size of magnetic islands. [1, 2, 3, 4, 5, 6, 7] as a result, islands are
no longer perceived as a direct threat to confinement, except in the context of ideal
instabilities. Evidence has accumulated, however, showing that they have significant
nonlocal effects on the profiles even when they occupy a small fraction of the confinement
volume. [8, 9, 10, 11] This has fostered interest in using islands as agents to control
transport and stability properties. In addition, islands constitute a useful diagnostic tool
for obtaining information on the current and rotation profiles. Lastly, they provide a
unique window into plasma dynamics at scales that are difficult to observe directly. Here,
we present an overview of the experimental and theoretical results concerning magnetic
islands.

2. Magnetic islands as equilibrium structures

We restrict attention to islands that are thin but sufficiently large to affect the back-
ground profiles of the reference equilibrium: in practice this corresponds to perturba-
tion amplitudes in the range 10−4 <∼ δB/B <∼ 10−3. [12] The most direct approach to
predicting the evolution of such islands is by using a general-purpose initial-value fluid
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code.[13, 14, 15, 16, 17] Due to the high conductivity of fusion plasmas, however, island
widths generally evolve very slowly compared to the Alfvén time. Long simulation times
are also required in order to address the question of their effects on the profiles. This,
together with the spatial resolution requirements, has severely restricted the scope of the
problems that can be treated in this way. A more adapted approach is to use the time
and space-scale separation to advantage by investigating islands from the point of view
of the equilibrium and transport of 3D helical plasmas. We elaborate on this approach.

In the context of equilibrium theory, the occurrence of magnetic islands is a consequence
of the current conservation law, ∇·J = 0. Separating the components of the current in the
directions parallel and perpendicular to the magnetic field, we note that the perpendicular
component of the current, J⊥, is determined by force balance,

J⊥ = B−1 b̂×∇p.

Substituting the perpendicular current into Ampère’s law, we find a magnetic differential
equation for the parallel component of the current, J‖:

B · ∇(J‖/B) = −∇ · J⊥.

It is convenient to use field-line coordinates defined by B = ∇χ×∇(ζ − qθ), where θ and
ζ are poloidal and toroidal coordinates, respectively, χ is a poloidal flux function, and q
is the safety factor. Fourier expansion using these coordinates yields the solution[

J‖
B

]
m,n

=
µ0p

′

〈B2〉
∑
m,n

Gm,n(q)

m− nq
+ Ĵm,nδ(q −m/n), (1)

where G is a geometrical coefficient, the m, n subscripts denote the Fourier coefficients of
the corresponding variables, and the Ĵm,n are integration constants. Except in perfectly
symmetric systems, the Gm,n do not vanish and the parallel component of the current is
singular on every flux surface with a rational safety factor q.

As a consequence of plasma resistivity, the current singularities bring about magnetic re-
connection and the breakup of the resonant magnetic surfaces into island chains. The pri-
mary object of island theory is to calculate the width and either the phase (for externally
produced asymmetries) or the rotation frequency (for spontaneous symmetry-breaking
bifurcations) of the resulting islands. It is important to keep in mind, however, that the
width of the island is not merely a local property but that it measures the amplitude of the
“tearing” component of the wavefunction in the entire device. In fact, islands were first
observed in tokamaks through oscillations of the magnetic field at the edge, the so-called
Mirnov oscillations.

Due to the singular nature of the perturbation, it is necessary to separate the calcu-
lation in thin layers centered on the resonant surfaces from that outside these layers.
Asymptotic matching of the solutions in the layers to the exterior solutions completes
the determination of the perturbed equilibrium. Within the layer, the MHD model is
generally inadequate but the analysis is facilitated by an expansion based on the thinness
of the layer, q −m/n� 1. Outside the layer, by contrast, the MHD model gives a good
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description of the distortion of the equilibrium, but in order to address the effect of the
island on the profiles it must be supplemented by a transport calculation. [9]

The helical equilibrium outside the layer is sensitive to the imposed geometry as well as
to the current and pressure profiles, so that its calculation generally requires a numer-
ical approach. In nominally symmetric devices, it is appropriate to linearize about the
unperturbed equilibrium. The standard code for calculating the perturbed equilibrium
is the venerable PEST-III, which calculates both the tearing-parity and twisting-parity
(interchange) wave-functions in tokamaks with an axisymmetric boundary condition.[18]
A simplified picture of PEST-III’s function is that for a given toroidal mode number n
and an equilibrium with M singular surfaces, it calculates a matrix relating the M am-
plitudes Ĵm,n of the delta functions in Eq. 1 to the amplitudes of the reconnected flux in
the M magnetic islands at the singular surfaces. In the special case where the toroidal
mode number n and the profile of the safety-factor are such that the plasma contains only
one resonance, the matrix reduces to a single element, the well-known ∆′ parameter. [19]
An important property of this parameter is that it grows without bounds as the plasma
approaches ideal marginal stability (as a result of rising β, for example). [16] This is a
manifestation of the approach of an equilibrium bifurcation. An ongoing effort to replace
PEST-III by a code that accounts for the geometry of the coils and uses more advanced
numerical techniques is making steady progress. The current embodiment of this effort,
the Ideal Perturbed Equilibrium Code (IPEC), calculates the ideal wavefunctions in the
presence of resonant magnetic perturbations driven by field errors and control coils. [20]
Among other applications, IPEC enables the optimization of the design of error-field
correction coils. [21]

In stellarators, by contrast, the reference-state itself contains current singularities but
their amplitude is minimized by design. Stellarator equilibrium codes separate into those
that assume simply nested magnetic surfaces, such as VMEC, [22] and those that allow
for magnetic islands, such as HINT and PIES. [23] Simulations with the HINT code have
shown that the geometry of the exterior region can lead to island healing.[24] Such a heal-
ing mechanism is distinct from that predicted by the layer theory, the latter depending
only on the local value of the magnetic well at the resonant surface. [25, 26, 27] Generally
speaking, global island codes serve to identify the qualitative effects of the overall geome-
try. Their partial or complete omission of effects that are important in the layer, however,
such as convective transport near the separatrices, polarization currents, and the role of
viscosity on the phase of the island, prevents them from predicting the observed island
widths and can lead to differences in their results. [23] Unfortunately, there is no existing
framework for coupling global and layer calculations in Stellarators.

Turning our attention to the singular layer, we note that the analysis in this region is
facilitated by the fact that, for thin islands, the flute ordering applies:

k‖ � k⊥. (2)

Note in the nonlinear regime, the flute ordering implies that the non-resonant sidebands
are smaller than the resonant harmonics by a factor of k‖/k⊥. The flute ordering also
underlies the gyrokinetic equation, so Eq. 2 implies that gyrokinetic codes are applicable
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in the layer region. For long wavelength modes (kθrs ∼ 1, where rs is the radius of the
singular surface), the gradients of the perturbations are approximately perpendicular to
the flux surfaces. In principle, this allows for a 1.5D treatment [28, 29] but in practice
numerical simulations are often carried out in 2D slab geometry. [30, 31, 32]

The theory divides into two regimes depending on the width of the island. The first regime
applies when the width of the island is such that the perpendicular transport dominates
over the parallel transport. In this regime, quasi-linear theory applies and leads to the
description of the shielding of small resonant magnetic perturbations by flowing plasmas
and of the failure of shielding manifested by mode penetration. The second regime, when
parallel transport dominates, describes fully developed islands such as snakes [33] and the
islands created in the edge of stellarators. In this second regime, the island modifies the
equilibrium profiles giving rise to flattening and sometimes local peaking of the profiles
around the O-point. We describe both regimes in turn.

3. Shielding and penetration of resonant magnetic perturbations

When the plasma rotation exceeds the rate of reconnection at the resonant surface, recon-
nection is inhibited. [34, 35, 36] The resulting perturbation is reduced from its amplitude
in the absence of rotation by a factor of H−1/3(ωA/ω) where ω and ωA are the rotation
and Alfvén frequencies, and H = (ην)−1/2 is the Hartmann number. The flowing plasma
exerts a viscous force on the suppressed island resulting in a phase shift between it and
the current. The viscous force is opposed by an electromagnetic force that is concentrated
in the resonant layer and acts as a brake on the rotation. This resonant electromagnetic
force is augmented by a neoclassical drag that is distributed across the entire plasma.
Analysis of braking observations on JET and NSTX indicate that the neoclassical drag
dominates the braking process. [9, 37]

A crucial feature of the resonant braking force is that it exhibits a minimum as a function of
the rotation velocity. The viscous force exerted by the plasma, by contrast, is a monotone
decreasing function of the rotation velocity that vanishes when the plasma is rotating at
its natural velocity, i.e. at its velocity in the absence of resonant magnetic perturbation
(RMP). It follows from the shape of the two force curves that the balance between the
viscous and electromagnetic forces exhibits a tangent bifurcation as the amplitude of the
RMP increases. Beyond the tangent bifurcation point, the island grows rapidly up to a
width comparable to the vacuum width. At the same time, the plasma rotation adjusts
so as to satisfy the no-slip as well as the frozen-in conditions. The bifurcation is known
as mode penetration. [35, 38]

Mode penetration imposes conflicting requirements on the design of the error-field control
coils for ITER. Avoidance of low-density locked modes (LDLM) requires minimizing the
amplitude of the magnetic perturbations that are resonant in the core. The tolerances
for error fields become more stringent during operation above the no-wall stability limit
due to the amplification of the braking force in this regime.[39, 40, 41] On the other
hand, a recently developed technique for the mitigation of Edge Localized Modes (ELM)



OV/2-5 5

uses the penetration of RMP in the plasma edge to broaden the H-mode pedestal. [42,
43] The importance of ELM mitigation for ITER is motivating intense interest in the
modeling of mode penetration and rotation braking by RMPs. An intriguing feature of
the observations is the preservation and sometimes steepening of the electron temperature
pedestal during the application of the RMP. A possible explanation of this effect is that
the very high electron diamagnetic flows in the electron pedestal screens the perturbation,
locally preserving good flux surfaces. [44]

At the onset of penetration the effect of the RMP on the profiles other than that of
velocity is small. As the island grows to saturation, however, it modifies the remaining
profiles. The next section describes the interaction between the profiles and the magnetic
island in the case of penetrated RMP as well as for spontaneous tearing modes such as
the NTM.

4. Transport in magnetic islands

The primary question regarding unscreened magnetic islands is their effect on the pro-
files of density, temperature, current, and rotation velocity. The changes in the profiles
determine the effect of the island on overall confinement, and they determine whether
the island grows or decays. Our understanding of the effect of the profiles on the island
amplitude informs the methods used for avoiding islands as well as for suppressing them
with RF current-drive and heating.

To evaluate helical equilibria with islands, the first obstacle we must confront is the inter-
dependence of the profiles and the island width. Fortunately, in ideally stable equilibria
the perturbed helical current is small compared to the background current. As a result,
the variation across the layer of the resonant Fourier component of the helical flux, ψm,n,
is small. The approximation that consists in neglecting this variation is known as the
“constant-ψ” approximation. This approximation greatly facilitates the analysis and in-
terpretation of observations. It implies that just two parameters specify the magnetic
geometry: the amplitude ψm,n and phase φ of the resonant perturbation (for a rotating
island, dφ/dt = ωt). The helical flux takes the form

ψ = B0x
2/2Ls + ψ̃m,n cos(mθ − nζ − φ), (3)

where x is the distance from the resonant surface, Ls is the shear length, and B0 is the
background field. Equation (3) implies that the width of the island is W = 4

√
ψm,nLs/B0.

The constant-ψ approximation leads to the following simple expression of the matching
condition between the resonant layer and the exterior solution:

∆′
m,nψm,n =

∫
dx

∮
dθ

π
J exp[i(mθ − nζ − φ)]. (4)

where ∆′
m,n is the matching parameter from the exterior solution. The helical current in

Eq. (4) includes the perturbed conduction, bootstrap, polarization, Pfirsch-Schlüter, and
the beam- and RF-driven currents. A solution method is now apparent: the first step
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consists in solving the transport problem in the geometry specified by Eq. (3). The second
step consists in using the result of the transport calculation to evaluate the integral in
Eq. (4). Separating the contributions to the current from the time derivatives of ψm,n

and φ leads to the evolution equations for the components respectively in phase and in
phase-quadrature with the reconnected flux,

τR
r2
s

dW

dt
= ∆′ + ∆(W,ω); (5)

d2φ

dt2
= Ft(W,ω). (6)

The above two equations generalize the results of Rutherford. [45] The two functions
∆(W,ω) and Ft represent respectively the free energy available in the layer for reconnec-
tion and the acceleration of the island caused by any imbalance of lateral forces in the
layer. The determination of these two functions is the central task of the singular-layer
theory. In the remainder of this section we describe some of the recent progress in our
knowledge of the contributions of the pressure-driven (Pfirsch-Schlüter and bootstrap)
currents and of the inertia-driven (polarization) currents to these two functions.

The contributions of the Pfirsch-Schlüter [46, 25] and Neoclassical current [47, 48] to
the island evolution have long been well understood in the limit of large islands. The
increasing resolution in the observations of electron temperature profiles, however, have
stimulated theoretical research on the degree of temperature flattening. The effects of a
magnetic island on the profiles of temperature are governed by the competition between
parallel transport and perpendicular transport. The role of this competition in magnetic
islands is analogous to that in the scrape-off layer. The controlling parameter is the
connection length, the length taken to cross a flux surface along a field line. Near the
separatrix, the connection length becomes very large, reflecting the fact that the magnetic
field near the X-lines is nearly parallel to the magnetic axis of the flux tube. For sufficiently
long connection lengths, the parallel fluxes are no longer effective in relaxing the profiles
along the field line. Equilibrium gradients may then develop within the flux surfaces.

Near the O-point of the island, the connection length Lc ∼ Ls/kW where Ls is the
magnetic shear length. It follows that as the island grows, there is a characteristic width
above which the parallel transport dominates and the gradients become perpendicular to
the flux surfaces. In the collisional regime, the equation describing the transport near the
island is [45]

κ‖∇2
‖T + κ⊥∇2

⊥T = 0.

The resulting critical width is [49]

Wc ∼
(
κ‖
κ⊥

Ls

kθ

)1/4

.

In the collisionless regime, by contrast, the drift-kinetic equation governs the transport,

v‖∇‖f +∇⊥(D∇⊥f) = 0.
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Here D is a phenomenological quasilinear diffusion coefficient describing the effect of
turbulent transport or of the mode itself. [50] The critical width is then [51]

Wc =

(
DLs

kθvt

)1/3

.

For W � Wc, the profiles inside the separatrix are flat in the absence of sources or inward
pinches. Profile flattening is indeed routinely observed in experiments,[52, 53] but there
are also challenging observations of profile peaking inside large islands.[54] Except for the
observations of snakes in the core where the constant-ψ approximation fails, [33] most of
the observations of peaking are for islands near the edge where the effects of sources such
as radiation and charge exchange are likely to play a role. The cause of profile peaking
is presumably a combination of very good confinement and an inward pinch, but there is
scant existing theory.

Another contribution to the island evolution integrals (5)-(6) that has received recent
attention is that of the polarization current. The corresponding theory applies to rotating
as well as locked islands, and to islands located in the core as well as in the edge. The
polarization current results from the acceleration of the plasma as it flows along the
Laval nozzle formed by the distorted flux surfaces outside the sepraratrix. The vector
product of the acceleration and the magnetic field gives rise to a well-known ion drift
with non-vanishing divergence. A parallel current must accompany this drift to maintain
quasi-neutrality. This parallel current mediates the effect of the plasma flows on the island
evolution.

In order to determine the distribution of the polarization current, it is necessary to know
the velocity of the plasma flow with respect to the island. Since the ions and electrons
experience opposite diamagnetic drifts, they cannot both be at rest with respect to the
island. In order to facilitate the discussion of the relative velocity of the island with respect
to the electron and ion fluids, it is convenient to express all velocities in a frame where
the background electric field vanishes. In this frame it is straightforward to show that
the velocity of the island depends on the degree of profile flattening inside the separatrix.
[55] This follows from the frozen-in and the no-slip conditions. The frozen-in condition
expresses the fact that the separatrix traps the electron fluid whenever W > ρs

√
C where

C = (Ls/Ln)2(νe/ω∗e)(me/mi) is a measure of the collisionality (the bound on C defines
the semi-collisional regime). [56] The no-slip condition, by contrast, expresses the fact
that the much greater viscosity of the ion fluid compared to the electron fluid results in
the continuity of the ion velocity across the separatrix. These two conditions lead to the
following expression for the island velocity u:

u = vin
De + vout

Di − vin
Di,

where the vDs are the diamagnetic drifts, the index s = i, e labels the species, and
the superscripts indicate on which side of the separatrix the quantity is measured. To
avoid unnecessarily burdening the notation, we assume that the island is sufficiently wide
that the electron temperature is fully flattened inside the separatrix. We further assume
that the degree of flattening of the ion temperature is equal to that of the density. The
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diamagnetic velocities are then
vin

Ds = fvout
Ds ,

where f is a flattening factor varying between 0 and 1 that describes the ratio of the
density gradient at the O-point of the island to the density gradient in the reference state.
Substituting the diamagnetic drifts into the equation for the island velocity yields

u = fvout
∗e + (1− f)vout

∗i ,

We see that islands that are sufficiently thin for the density and ion temperature gradient
to be maintained (f = 1) propagate at the electron diamagnetic drift velocity. Note that
electrons outside the separatrix, however, are propagating at 1+ηe times the diamagnetic
velocity, where ηs is the ratio of the background density scale-length and the temperature
scale-length of species s. In the opposite limit of large islands in which the ion pressure is
fully flattened (f = 0), the island propagates at the ion pressure drift velocity, or −(1+ηi)
time the drift velocity. That is, the ions outside the separatrix are at rest with respect to
the island.

The above discussion leaves unanswered the question of the characteristic width Wf for
density flattening. This question is controversial and estimates have ranged by more than
an order of magnitude, from the semi-collisional boundary Wf ∼ ρs

√
C [31] to the drift-

acoustic width Wf ∼ ρsLs/Ln at which the drift wave couples with ion-acoustic waves.[57]
Numerical results for C < 1, however, suggest that the coupling of the island to drift
waves can flatten the profiles even in the absence of ion-acoustic waves, for k‖cs � ω∗.
An estimate consistent with the available theoretical results is Wf ∼ ρsmax(1, C1/2). This
estimate is qualitatively consistent with observations in LHD showing that the electric
field inside the m = n = 1 island drops to zero for W >∼ 1 cm. [58, 59] It is also
qualitatively consistent with other observations in the same experiment showing a clear
increase of the iso-density width with collision frequency and a decrease with β. [53] Lastly,
measurements of the rotation velocity of neoclassical tearing modes in DIII-D have found
that the islands were rotating in the ion direction, consistent with ion pressure flattening.
[60]

It is natural to expect the polarization drift to become vanishingly small for island of
width W >∼ Wf , since these islands are co-rotating with the ions. Surprisingly, numerical
simulations in the collisional regime, C � 1, show that this is not the case. [32] Instead,
the polarization current exhibits a pronounced resonance when the island width is such
that the drift wave couples strongly to ion-acoustic waves. That is, the resonance occurs
for ω∗ = k‖cs, or W = ρsLs/Ln. Analysis of the diffusion of momentum in an island
with fully flattened profile shows that the resonance manifests itself as a singularity of
the Reynolds stress appearing in the diffusion equation. [61] This is reminiscent of the
role of sonic flows in the scrape-off layer. In the case of islands, the resonance is robustly
stabilizing and may determine the effective threshold for the onset of neoclassical tearing
modes.
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5. Discussion

The control of magnetic islands has progressed to the point that they no longer present a
substantial threat to the confinement of fusion plasmas. As a result, the focus of research
has shifted to using islands as the agents as well as the subjects of plasma control sys-
tems. Examples include the use of islands for driving current in the core, [8] for mitigating
ELMs, [42] and for controlling transport in the edge of stellarators. [52]

Theory has played an important role in developing our present abilities with regard to
magnetic islands. In addition to predicting pressure-driven healing in stellarators [25] and
the growth of neoclassical tearing modes in tokamaks, [47] theoretical understanding has
guided the development of techniques for using RF current drive to suppress islands. [62]
Although analytic results and simulations have proven to be useful guides for interpreting
experiments and providing qualitative predictions, much work remains to be done in order
to achieve quantitative prediction capabilities. The renewed interest in the development
of computational tools for predicting the effects of external coils on three-dimensional
waveforms [20] is encouraging in view of the limitations affecting initial value codes. In
the near term, however, the progress demonstrated by initial value codes with regard to
the performance of two-fluid time steppers [14, 15] and anisotropic heat transport [63, 64]
is likely to place them at the forefront of advances in our understanding of island physics.

Research funded by the US Department of Energy under contracts # DE-FG03-96ER-54346 and
DE-FC02-04ER54785.
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