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Plasma Control Solutions at DIII-D

Modulated Current Drive for NTM
Suppression




DIII-D Advanced Tokamak Program Has Motivated

Developing Control Solutions Relevant to ITER

� TokSys: Integrated plasma control standardized environment and tools

� Enables systematic design and testing of controllers

� Enables validation on present devices and confident extrapolation to ITER

� Examples of control solutions developed using TokSys

� NTM control design tools and algorithms addressing ITER-specific limitations

� Axisymmetric controllers with nonlinear algorithms to avoid coil current limits

� Resistive wall mode models appropriate for ITER design

� Control and fault response algorithms used in startup of the EAST tokamak



Integrated Plasma Control



ITER Needs Systematic Design for High Confidence

Performance: Integrated Plasma Control Used at DIII-D



TokSys is an Integrated Plasma Control Environment That

Allows Systematic Design and Testing of Controllers

� Control-level models:

� Simplified but accurate

� Allow iterative design with
multivariable controllers

� Design tools written in
international standard
Matlab/Simulink

� Complete test of both
algorithms and
implementation provides
confidence in real time
performance
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NTM Stabilization Algorithms



Using ECCD to Replace Missing Bootstrap Current

and Stabilize NTM in ITER Requires High Accuracy

� ECCD must be

accurately positioned at

q=m/n rational surface

where NTM island forms

� Alignment accuracy

need in DIII-D ~ 1 cm

� ITER ECCD spot is large

due to high launch angle

� Need high relative

accuracy, q-surface

reconstruction

� Need modulation  to

increase effectiveness
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DIII-D NTM Control Demonstrates Accurate and

Sustained Alignment of ECCD and Island

� Align ECCD/island by

varying major radius of

island or resonance (future:

launcher angle)

� After island suppressed,

evolution in equilibrium

detunes alignment

� �Active Tracking� maintains

alignment as profile

evolves

� Uses realtime q-profile

reconstruction (realtime

equilibrium with MSE

measurement)

Resonance location
tracks q-surface motion

Mode suppressed

(TORAY-GA
ECCD calculation)

Rec



DIII-D Experiments Demonstrate Systematic Search

for Alignment, Maintained with q-Surface Feedback




New PCS Algorithm Will Demonstrate Modulation to

Synchronize Gyrotron Power with Rotating Island

� Realtime Fourier analysis of

midplane probe signals

� After initial calculation

period, algorithm identifies

~constant frequency, time-

varying phase

� Phase, frequency

command updated after

and fixed during each

calculation period

� Command to dedicated cpu

produces modulation signal

for gyrotrons phase locked to

island at ECCD location

Initial calculation
period

time-varying Phase

ECCD power
synchronized with

island

Experimental B-probe signal

constant Frequency

Simulation Using DIII-D Experimental Data



Shape Control with Coil Current Limits



� ITER multivariable controllers seeking to
produce zero shape/position error will
demand PF currents exceeding coil
limits

� Failure to regulate PF currents allows
them to drift and hit limits as plasma
profiles change

� A nominal current trajectory calculated

from plasma response models can:

� Minimize shape errors

� Maximize distance to current limits

� Reduce control gains

� PF currents must be actively regulated
in long-pulse superconducting
tokamaks such as ITER

Axisymmetric Control in Tokamaks Requires

Avoiding Current Limits

DIII-D Equilibrium PF Coil Currents

Þnite shape error

Currents required for
zero shape error Forbidden current

region

Permitted
current region



DIII-D Experiments Have Demonstrated Model-Based

Multivariable Control with PF Current Regulation

Segment 1 
control point

Segment 2 
control point

Segment 7 
control point

Shape with Feedforward
Nominal Current Trajectory

same as Shape with standard
isoßux control

Boundary
control point

Boundary
control point

Boundary
control point

RX

ZX

Demonstration of Closed-Loop Control
with Nominal Current Trajectory

Coil Current
Trajectory

Max coil current

Min coil current



Models for RWM Stabilization Design



ITER Requires Model-Based Control Design for RWM

Stabilization Systems

� Direct extrapolation from experiment not possible:

� Many candidate RWM control coil designs different

from those on present devices

� ITER system/controller dynamics very different from

present devices

� RWM design models must be:

� Validated on present devices

� Control-level, relatively simple, allowing systematic

design and iteration

� Include sufficient detail to describe essential

dynamics and physics
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Eigenmode Finite Element Mesh Approach Allows

High Accuracy for Complex Structures

� Finite element model produces

eigenmode representation of

conductor-plasma-sensor

mappings

� Select desired number of modes

to retain in system dynamics

DIII-D RWM
Geometry

Control coils
and Sensors



Accurate Models Enable Stabilization of Large

Range of Growth Rates with Single Controller

� Eigenmode system: stable gain

space shrinks with increasing

growth rate (agrees with

previous studies)

� PD control allows operation up to

growth rate of 4200 rad/sec if

model sufficiently accurate

� Full multivariable controllers

allow stabilization up to ideal

limit in DIII-D (5000 rad/sec) with

accurate models

!=1000 rad/s
(160 Hz)
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Proportional-Derivative Control in DIII-D



Control Applications Beyond DIII-D
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Use of EAST/DIII-D PCS and TokSys Environment Has

Contributed to Recent Success of EAST Startup

� Successful use of calculated breakdown scenario

� Demonstrated fault detection/response algorithms

� Distant, superconducting coils: challenge to control

� Demonstrated control of plasma current, position



Summary and Conclusions

� ITER requires many novel control solutions owing to its nuclear mission and unique

control limitations

� Integrated plasma control can enable high-confidence, high reliability control

performance for ITER:

� Systematic design of controllers based on control-level models

� Verification of controller implementation in simulations before experimental use

� Active NTM control in DIII-D is addressing ITER requirements:

� Robust and sustained island/ECCD alignment with realtime q-profile reconstruction

� Recent progress in gyrotron modulation capability, demonstrated with detailed simulations

� Simultaneous current limit avoidance and shape control demonstrated in DIII-D is

essential for ITER

� RWM control design based on high accuracy low-order models, multivariable

design and analysis essential for ITER design

� EAST/DIII-D PCS and TokSys models have contributed to successful EAST startup


