Dependence of Confinement and Stability on Variations in the External Torque in the DIII-D Tokamak

by T.C. Luce[£]

for K.H. Burrell,[£] R.J. Buttery,[‡] J.C. DeBoo,[£] J.R. Ferron,[£] A.M. Garofalo,^{*} P. Gohil,[£] D.A. Humphreys,[£] G.L. Jackson,[£] R.J. Jayakumar,[§] J.E. Kinsey,[¶] R.J. La Haye,[£] G.R. McKee,[#] M. Okabayashi,[†] C.C. Petty,[£] P.A. Politzer,[£] H. Reimerdes,^{*} D.J. Schlossberg,[#] J.T. Scoville,[£] M.W. Shafer,[#] W.M. Solomon,[†] E.J. Strait[£], F. Volpe[¢]

[£]General Atomics, San Diego, California. *Columbia University, New York, New York. [†]Princeton Plasma Physics Laboratory, Princeton, New Jersey. [‡]EURATOM/UKAEA Association, Culham, United Kingdom. [¶]Lehigh University, Bethlehem, Pennsylvania. [§]Lawrence Livermore National Laboratory, Livermore, California. [#]University of Wisconsin, Madison, Wisconsin. [¢]Max Planck Gesellschaft, Germany.

Presented at the 21st IAEA Fusion Energy Conference Chengdu, China

October 16-21, 2006

Reorientation of One Neutral Beam Line Allows Experiments to Test the Effects of Rotation on Confinement and Stability

- Effects on energy confinement (L-mode, H-mode, Hybrid)
- Measurements of momentum confinement
- Simultaneous control of rotation and stored energy
- Effects on the L-H transition power threshold
- Changes in tearing mode onset and saturated amplitude
- New insight into rotational stabilization of resistive wall modes

Caveat: Fueling and NBCD profiles also change. These effects must be factored into the conclusions

Hybrid Scenario Demonstrated at Low Rotation With Modest Reduction in Confinement

- Low rotation obtained with 1.5 ctr-injection sources + co-injection in feedback control ($\beta_N = 2.6$)
- Sawteeth do not appear (q₉₅ = 4.0)
- Performance not yet optimized (pressure limit, lowest q₉₅ without sawteeth)

Effect of Changes in Torque Seen Across the Entire Radial Profile

Changes in E×B Shear Can Explain the Effect of Torque on Energy Confinement

- With high toroidal rotation, E×B shear required in to reproduce measured profiles
- At low rotation, E×B shear is much less important

• Uses measured density, toroidal rotation, and current profiles

Advanced Inductive Discharges Achieve Conditions Consistent with Q > 10 in ITER With Low Rotation

- $\beta_N = 2.7$ (feedback controlled), $q_{95} = 3.3$
- Transition to low rotation occurs at the initiation of the high β_N phase
- High performance at low rotation maintained for > 4 τ_R
- Extrapolates to Q > 10 in ITER at 15 MA for several common scalings:

ITER89-P:	Q = 10.3
IPB98y2:	Q = 10.2
DS03:	$Q = \infty$ (even with 7%
	lower H _{DS03})

Discharges With H–Mode Edge Show Significant Increase of Confinement With Increasing Torque

- Points connected by lines are at constant field, current, density and pressure. Some parameters change between scans
- Scans in H-mode edge discharges show increases in confinement with increasing torque
 - 50% improvement is much larger than expected prompt losses from ctr-injection
- Adding torque in the counter current direction does not show similar improvement
- No variation of confinement with torque is seen in L-mode

Momentum Transport Presents Puzzling Questions

- Same dataset as previous graph on τ_{th}
- The different confinement regimes have variations in τ_{th} up to 4x at equal torque, while ω_{tor} varies by typically 2x
- There is intrinsic rotation without torque input that is not described by a simple momentum conservation equation
- The hybrid data show a non-linear response of ω_{tor} to torque, possibly due to interaction of tearing modes with the wall or due to skin depth reduction of non-axisymmetric magnetic fields

New NBI Configuration and Real-Time Analysis of Toroidal Rotation Allows Simultaneous Control of Stored Energy and Rotation

 Uses proportional-integral controller with gains determined prior to the experiment through modeling

L–H Power Threshold Varies Strongly with the Torque Injected by the Neutral Beams

- Neutral beam power is varied in
 < 1 MW increments by modulation
- Torque is varied by the mixture of co-injection and counter-injection of the neutral beams
- More than a factor of 3 difference in L-H power threshold is seen from full co-injection to full counter-injection

Strong Variation with Injected Torque May Lead to Better Understanding and Prediction of the L–H Power Threshold

- All data from single operational day to minimize systematic effects from changing wall conditions
- Little difference seen between upper and lower single null with low or counter rotation
- Detailed analysis of prompt orbit losses, radial electric field and fluctuation data in progress

Plasma Rotation Affects the Pressure Limit to m=2/n=1 Tearing Modes

- Conventional H-mode discharges at q₉₅ = 4.5 with sawteeth
- Plasma with counter-injection is unstable at much lower value of β_N than the plasma with co-injection
- Caveat: effect of current profile change on ∆´ is not yet quantified

Pressure Limit to m=2/n=1 Tearing Modes Varies Significantly with Injected Torque

- Onset determined by NB power ramps with different ratios of co-injection and ctr-injection
- Effect of additional n=1 error fields small compared to the variation with injected torque

Saturated m=3/n=2 Tearing Mode Amplitude Decreases With Increasing Torque

- Both classes of discharges demonstrate high performance in the presence of m=3/n=2 tearing modes
- Magnitude of change in current profile with ctr-NBI and the effect on Δ´ has not been evaluated

Threshold for Rotational Stabilization of RWMs Found With Balanced NBI is Low

- Correction of n = 1 error fields optimized by direct feedback
- Simultaneous feedback control of β_N and torque apllied
- Plasma remains stable until toroidal velocity is < 0.3 % of the Alfvén velocity at the q = 2 surface

Observed Threshold for Rotational Stabilization is Lower Than Previous Results with Magnetic Braking

- Lower thresholds have been observed for low torque input cases, independent of the proximity to the ideal wall limit
- Present experimental results agree with theoretical predictions
- Low rotation thresholds for stabilization in cases with axisymmetric magnetic fields is encouraging for access to high β_N in ITER

Summary

Changes in rotation lead to significant variations in many plasma phenomena that impact ITER performance:

- Advanced inductive scenario performance still projects to Q > 10 in ITER with low rotation, but the margin is reduced compared to cases with rotation
- Going from no rotation to large co-rotation leads to:
 - increased energy confinement (over 50% in some cases)
 - increased L-H power threshold (> 2x)
 - increased pressure limits to m=2/n=1 tearing modes (~1.5x)
- Rotational stabilization of RWMs appears to have a much lower rotation requirement than previous data using magnetic braking indicated
- Accurate prediction of momentum transport, especially accounting for MHD modes and non-axisymmetric magnetic fields, will be challenging

