Stability and Control of Resistive Wall Modes in Low-Rotation Tokamak Plasmas

EX/7-1Ra: Active Control of Resistive Wall Modes in High Beta Low Rotation Plasmas A.M. Garofalo*

for: G.L. Jackson,[†] R.J. La Haye,[†] M. Okabayashi,[‡] H. Reimerdes,^{*} E.J. Strait,[†] M.S. Chu,[†] E.J. Doyle,[¶] J.R. Ferron,[†] C.M. Greenfield,[†] R.J. Groebner,[†] Y. In,[§] R.J. Jayakumar,[△] M.J. Lanctot,^{*} G. Matsunaga,[#] G.A. Navratil,^{*} C.C. Petty,[†] J.T. Scoville,[†] W.M. Solomon,[‡] H. Takahashi,[‡] M. Takechi,[#] A.D. Turnbull,[†] and The DIII-D Team

EX/7-1Rb: Plasma Rotation and Wall Effects on Resistive Wall Mode in JT-60U M. Takechi[#]

for: G. Matsunaga,[#] T. Ozeki,[#] N. Aiba,[#] G. Kurita,[#] A. Isayama,[#] Y. Koide,[#] Y. Sakamoto,[#] T.Fujita,[#] Y. Kamada,[#] and the JT-60U Team

Presented by A.M. Garofalo*

at the 21st IAEA Fusion Energy Conference Chengdu, China *Columbia University, New York, New York. [#]Japan Atomic Energy Agency, Naka, Japan. [†]General Atomics, San Diego, California. [‡]Princeton Plasma Physics Laboratory, Princeton, New Jersey. [¶]University of California-Los Angeles, Los Angeles, California. [§]FAR-TECH, Inc., San Diego, California. [△]Lawrence Livermore National Laboratory, Livermore, California.

October 16-21, 2006

Resistive Wall Mode Stabilization is Needed for Steady State Tokamak Operation at High Fusion Performance

- ITER Steady-State scenario (#4) requires Resistive Wall Mode stabilization
 - Target: $\beta_N \sim 3$, above the no-wall stability limit $\beta_N^{\text{no-wall}} \sim 2.5$
- Sufficient plasma rotation could stabilize RWM up to ideal-wall β_N limit
- Present ITER design of external error field correction coils is predicted to allow RWM feedback stabilization if plasma rotation is not sufficient

Resistive Wall Mode Stabilization is Needed for Steady State Tokamak Operation at High Fusion Performance

- ITER Steady-State scenario (#4) requires Resistive Wall Mode stabilization
 - Target: $\beta_N \sim 3$, above the no-wall stability limit $\beta_N^{\text{no-wall}} \sim 2.5$
- Sufficient plasma rotation could stabilize RWM up to ideal-wall β_N limit
- Present ITER design of external error field correction coils is predicted to allow RWM feedback stabilization if plasma rotation is not sufficient
- Improved design for RWM stabilization could allow studies of scenarios approaching advanced tokamak reactor concepts, i.e. $\beta_N > 4$

RWM Stabilization by Rotation Allows Demonstration of High Performance Tokamak Regimes

JT-60U

β_N=4*

5

3

β

- High β , β_N , high bootstrap current fraction, high energy confinement sustained simultaneously in DIII-D
 - RWM feedback -> sustained high plasma rotation
- High β_N achieved with ferritic steel tiles in JT60U
 - Reduced ripple loss -> higher confinement and rotation with smaller plasma-wall separation

Will RWM Stabilization by Rotation Work in ITER?

- Until recently, it was believed that RWM stabilization required mid-radius plasma rotation ~O(1%) of the Alfven frequency, Ω_A
 - This level of rotation may not be realized in ITER
- Recent experiments using balanced neutral beam injection (NBI) in DIII-D and JT-60U show that the plasma rotation needed for RWM stabilization is much slower than previously thought
 - ~O(0.1%) of Ω_A
 - Such a low rotation should be easily achieved in ITER
- Even with sufficient rotation, active feedback may still be needed, but the system requirements could be reduced

ilization is much slower that Top View Perp Counter Tangential NBI (#7, #8) (2 units) CO dir. Perp Counter Tangential NBI (#9, #10) (2 units) Counter Tangential NBI (#9, #10) (2 units)

30° bean

DIII-D

Previously, RWM Rotation Thresholds Were Measured Through Magnetic Braking by n=1 External or Intrinsic Fields

- DIII-D using only uni-directional NBI:
 - Magnetic braking is applied by removing the empirical correction of the intrinsic n=1 error field

Much Slower Rotation Before RWM Onset is Observed by Reducing the Injected Torque With Minimized Error Fields

• DIII-D using a varying mix of co and counter NBI:

Weak β-Dependence is Observed for Rotation Thresholds Measured With Minimized Error Fields

• RWM onset (**D**) observed when V_{ϕ} at q=2 is ~10-20 km/s, or ~0.3% of local V_{A}

Weak β -Dependence is Observed for Rotation Thresholds Measured With Minimized Error Fields

• RWM onset (**D**) observed when V_{ϕ} at q=2 is ~10-20 km/s, or ~0.3% of local V_{A}

 Ideal MHD with dissipation implemented in MARS-F (kinetic damping model [Bondeson and Chu]) predicts slow rotation threshold for balanced NBI plasmas

High Threshold Measured With Magnetic Braking May Correspond to Entrance Into Forbidden Band of Rotation

- Increasing static non-axisymmetric field leads to bifurcation in torquebalance equilibrium of plasma
 - Rotation must jump from a high value to essentially locked
- "Induction motor" model of error field-driven reconnection [Fitzpatrick]:
 - Plasma rotation at critical point, V_{crit} ~1/2 of unperturbed rotation, V_0
- Lower neutral beam torque gives lower V₀, therefore a lower V_{crit} at entrance to forbidden band of rotation

With Optimal Error Field Correction, RWM Stabilization at Very Slow Plasma Rotation Sustained for >300 Wall Times

In High Performance Plasmas, Active RWM Feedback Is Required

- In DIII-D, high rotation is maintained with large, slow-varying n=1 currents in external coils for error field correction
- Smaller, faster-varying n=1 currents in internal coils respond to transient events (e.g. large ELMs), maintain RWM stabilization

Ferritic Steel Tiles (FST) lead to high beta on large JT-60U plasmas

- *JT-60U*
- Before installing ferritic steel tiles, few large plasmas reached the ideal beta limit, however it is difficult to exceed it due to lack of NB power.
- The net NB power with FST is 1.34 times larger than that w/o FST due to reduction of ripple loss.
- Increase net power of ~3.5 MW corresponding to 2 tangential beams.
 --> Change rotation by one-way tangential NB injection.
- Achieved high $\beta_N \sim 4.2$ exceeding ideal limit at $I_i < 1.2$ and $V_p > 70m^3 (\beta_N \sim 3.4 w/o FST)$.

β_{N} is restricted by the MHD instability

1.5

JT-60U **–**

- $B_t=1.575$, $I_p=0.9MA$, $q_{min}\sim1.1$, $q_{95}\sim3.5$, d/a~1.2
- High β_p -H mode plasma (ITB&ETB)
- The n=1 (m~3) mode appears at high beta region.
- The mode grows with growth time $1/\gamma \sim 1$ ms before collapse.
- Frequency of the mode is ~1-5 kHz
- Highest beta is obtained with co-rotation
- Confinement is best for the co-rotation plasma

β_N is determined by the ideal wall limit. (MARG2D code)

JT-60U -

- The dominant poloidal component is m=1 due to strong ITB at r/a~0.2.
- The mode is stabilized by the wall and ideal wall limit is $\beta_N \sim 3.9$ for the plasma at d/a=1.2 when no wall limit is $\beta_N \sim 3.1$.

-->Beta reaches ideal wall limit

- Current profile is determined by competition between current diffusion and increasing bootstrap current
- Small q_{min}(~1.0) for small and ctr rotation plasmas due to small bootstrap current.

--> Critical beta decrease at q_{min} <1.1. (q_{min} ~1.08 at highest beta plasma).

--> Small ideal wall limit.

- The critical beta is affected by the peripheral plasma current.
 - --> Small current ramp down before NB injection to reduce edge current.

RWM experiment for critical rotation

JT-60U **–**

- B_t =1.575 T, I_p =0.9 MA, q_{min} ~1.2, q_{95} ~3.5
- d/a~1.2
- To increase q_{min}, pre-NB is injected during current ramp up
- β_N is kept constant and change the tangential NB from ctr-NB to co-NB.
- Pressure and current profile is also kept constant

RWM is suppressed by plasma rotation

JT-60U **–**

- β_N is kept constant and change the tangential NB from ctr-NB to co-NB.
- Rotation can be controlled by changing tangential NB combination
- Disruption or collapse occurs at Vt~10 km/s ->n=1 mode grow with $1/\gamma$ ~10 ms .
- The mode suppressed after $\beta_N < \beta_{N \text{ no-wall limit}}$
- To investigate the effect of beta on critical rotation, we change the constant β_N .

Critical Rotation

JT-60U **_**

- Critical rotation V_c ~5-20km/s
- V_c/V_A~0.3% (q₉₅~3.5) is much smaller than previous DIIID and JET results using magnetic braking
 - Indicating importance of error field?
- V_c does not increase as C_β increase

Critical Rotation

JT-60U **_**

- Critical rotation V_c ~5-20km/s
- V_c/V_A~0.3% (q₉₅~3.5) is much smaller than previous DIIID and JET results using magnetic braking
 - Indicating importance of error field?
- V_c does not increase as C_{β} increase

Current driven RWM experiment for wall effect

JT-60U **_**

- Experimentally obtained growth rates are consistent with RWM, wall stabilization effects were observed
- AEOLUS-FT, which can take into account the resistivity of the wall, found 3/1 kink and 2/1 tearing branches.
- These modes have been observed in the region where the ideal MHD mode with ideal wall is stable.
- From the strong dependence, the observed modes can be identified as RWM.

New Hardware Capabilities Allow Simultaneous Discovery of Low RWM Rotation Thresholds in DIII-D and JT-60U

- The plasma rotation needed for RWM stabilization is much slower than previously thought -> $\Omega \tau_A \sim 0.3\%$ in both tokamaks
 - Achieved with neutral beam line re-orientation in DIII-D:
 - Balanced neutral beam injection -> lower injected torque and lower plasma rotation with minimized non-axisymmetric fields
 - Achieved with ferritic steel tiles in JT-60U:
 - Reduced ripple loss –> higher confinement and higher β with smaller plasma-wall separation
 - Such a slow rotation should be achievable in ITER
- Ideal MHD with dissipation (MARS-F with kinetic model) is consistent with new threshold rotation profiles for RWM stabilization
- Even with sufficient rotation, active RWM feedback in ITER likely needed, but system requirements could be reduced
- RWM stabilization allows demonstration of high performance tokamak regimes (β_N ~4)

Independent, Simultaneous Discovery of Low RWM Rotation Thresholds in DIII-D and JT-60U

MARS-F Calculations Suggest Dominant Effect of Edge Plasma Rotation

What Is the Right Criterion for Marginal Stability?

- Rotation at q=2 surface: previously, kinetic damping model always underestimated rotation threshold
 - Predicted both slow and fast thresholds (strong variation between scenarios)
- Predictions are more uniform across scenarios if criterion is broadened to include all rational surfaces, weighted by q²

$\Omega_{crit} au_{\mathrm{A}}$	q=2	q=3	q=4	q=5	$\Sigma \Omega_{\text{crit}}\tau_A _k$	$\Sigma \Omega_{crit} \tau _k q_k$	$\Sigma \Omega_{crit} \tau_A _k q_k^2$
Fast I _P ramp	0.0120	0.0035	0.0004	-	0.0159	0.0361	0.0859
Slow I _P ramp	0.0030	0.0018	0.0015	0.0002	0.0065	0.0184	0.0572
JET shape	0.0060	0.0007	0.0007	0.0001	0.0075	0.0174	0.0440
Reduced T _{NBI}	0.0020	0.0010	0.0031	0.0011	0.0072	0.0249	0.0941
Mean	0.0058	0.0018	0.0014	0.0005	0.0093	0.0242	0.0703
σ	0.0045	0.0013	0.0012	0.0006	0.0044	0.0086	0.0236
σ / mean	78%	72%	86%	120%	47%	36%	32%

"Forbidden Band" of Rotation Results in a Higher Effective Rotation Threshold for RWM Onset

- With uncorrected error field, resonant field amplification by stable RWM leads to large non-axisymmetric field increasing with beta above no-wall limit
- As perturbation amplitude increases, torque balance jumps to low-rotation branch
 With large per existemetric field, bifurentian
 - With large non-axisymmetric field, bifurcation of rotation occurs above RWM threshold

