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ELM control is a critical issue for burning plasmas.

Loarte PPCF 45
1549

• Pedestal collisionality also affects RMP ELM control

– RMP penetration decreases at lower e*

– Parallel transport increases at lower e*

• WELM/WPED increases as pedestal collisionality e* drops
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Summary and Results

• ELMs have been completely suppressed using an edge-
resonant magnetic perturbation (RMP) in ELMy H-modes
with ITER-relevant pedestal electron collisionality e* and
ITER-similar shape (ISS).

• ELMs are suppressed by lowering the pedestal pressure
gradient below the Peeling-Ballooning stability limit for Type
I ELMs.

• Pedestal pressure gradient reduction is controlled with RMP
strength br

m,n/BT.

• Pedestal pressure gradient is reduced primarily by
increased particle transport

• Density fluctuations increase 1.5-2x during RMP, consistent
with increased convective particle transport.
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• Minimum perturbation
br

m,n/BT for ELM
suppression varies
with shape:

br
m,n/BT ~ 3.2x10-4

at  ~ 0.7

br
m,n/BT ~ 2.8x10-4

at  ~ 0.37

Edge Resonant Magnetic Perturbations (RMPs)

suppress ELMs at ITER-relevant collisionalities in DIII-D

Burrell PPCF 47 B37 (05)
Evans Phys. Plasmas 13 (06)

Evans Nature Physics 2 419 (06)
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Need to localize perturbation to pedestal to avoid

degrading performance or triggering NTMs

• Magnetic field penetration model - see V. Parail; M. Becoulet,  this mtg.

– penetration high where collisionality is high and toroidal rotation is low  edge
localized

Bm,n
r,pl

=
Bm,n
r,vac

1+ ( L 2m)
2 where

• Elongation  slow pitch angle change
with radius on LFS  low m’s not well
localized by magnetic shear

• Magnetic shear  rational surfaces

close together near separatrix  small

RMP gives island overlap

= 2 nf
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• Edge RMP  stochastic field in pedestal  increased steady-state transport

• Reduced pped  stable P-B operating point controlled by RMP amplitude

• Must maintain pedestal height (stiff core transport coupled to pedestal
height.

Evans I5.005

Use RMP to increase steady-state transport through

pedestal to lower p below ELM stability limit.

Schematic P-B Stability Diagram
[P.B. Snyder, H.R. Wilson PoP2002]

Schematic Pedestal Profiles
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Edge RMP suppresses large ELMs by significantly

lowering the pedestal pressure gradient.

• Total pedestal
pressure is
reduced
during RMP
pulse below
P-B stability
boundary

• I-coil current
controls

pped

• pped is
reduced,
narrowed,
and shifted
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RMP-assisted ELM-free H-modes are linearly stable to

Peeling-Ballooning modes.

Stable

• Increasing RMP can push pedestal deep into linearly stable

regime; see P.B. Snyder, this meeting

Snyder, Osborne
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I-coil RMP has largest effect on density profile,

not Te profile at low collisionalty.

• global particle balance change

– P-B modes stabilized by
density pumpout similar to
QH mode [see P.B. Snyder
this meeting]

– QL estimate 3-4x increase
in Deff

• Te profile flattens at top of
pedestal

– qualitatively consistent with
quasi-linear estimate

– quantitatively consistent for
0.85 < n < 0.94 with
transport analysis by Stacey
and Evans

• Te steepens for 0.98 < n < 1

• Heat transport modeling with
3D fluid code E3D vac. field

destroys H-mode pedestal

Joseph JNM in

press (2007)
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p* reduced a factor of 2 in pellet perturbation

experiments with similar recycling (  p change)

• Identical pellets injected into discharges with e* ~ 0.2,  ~

0.7, and similar recycling conditions:

– I-coil = 0 kA, ELMing H-mode

– I-coil = 4 kA, RMP-assisted ELM-free H-mode
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D2 puffing raises pedestal density in ELM-suppressed

phase until a limit where small ELMs onset.

Evans I5.005

• Onset of small
ELMs is
correlated with
density upper
limit and
pedestal v  lower
llimit.

• Density limit
increases with
RMP strength
and neutral
beam power

• Similar to weak
RMP results at

e* ~ 1 but at e*
~ 0.15
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D2 puffing into RMP-assisted ELM-free H-mode raises

pped
TOT until n=30 P-B modes are destabilized.

• D2 puffing into RMP-assisted ELM-free H-mode gradually raises pedestal
pressure and pressure gradient.

• Discharge becomes unstable to high n =30 P-B modes about the time that small
ELMs/events onset during I-coil phase

• Small ELMs/events may be acceptable ITER operating regime.
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Increased particle transport during RMP may be due

to increased fluctuation-driven transport.

• FIR scattering: k  = 1 cm-1 not spatially localized  increased coherent modes and broadband
turbulence  1.5x increase in ñrms

reflectometry: localized to pedestal  increased turbulence  2x increase in ñrms

Deff ~ ñrms
2  Deff increases 3-4x, consistent with change inferred from profiles.
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Increased particle transport during RMP may be due

to increased fluctuation-driven transport.

• FIR scattering: k  = 1 cm-1 not spatially localized  increased coherent modes and broadband
turbulence  1.5x increase in ñrms

reflectometry: localized to pedestal  increased turbulence  2x increase in ñrms

Deff ~ ñrms
2  Deff increases 3-4x, consistent with change inferred from profiles.
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Increased particle transport during RMP may be due

to increased fluctuation-driven transport.

• FIR scattering: k  = 1 cm-1 not spatially localized  increased coherent modes and broadband
turbulence  1.5x increase in ñrms

• reflectometry: localized to pedestal  increased turbulence  2x increase in ñrms

Deff ~ ñrms
2  Deff increases 3-4x, consistent with change inferred from profiles.  increased

broadband turbulence
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Increased particle transport during RMP may be due

to increased fluctuation-driven transport.

• FIR scattering: k  = 1 cm-1 not spatially localized  increased coherent modes and broadband
turbulence  1.5x increase in ñrms

• reflectometry: localized to pedestal  increased turbulence  2x increase in ñrms

• Deff ~ ñrms
2  Deff increases 3-4x, consistent with change inferred from profiles.
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Pedestal toroidal rotation and Er change promptly when

RMP is applied and edge q resonant (3.4 < q95 < 3.7).

• H-mode pedestal v  spins up and Er well narrows.
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Pedestal toroidal rotation and Er change promptly when

RMP is applied and edge q resonant (3.4 < q95 < 3.7).

• H-mode pedestal v  spins up and Er well narrows.
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Onset of small ELMs as ne
ped rises is correlated with

decay of pedestal v  and degradation of Er well.

• As ne
ped rises, v  and Er profiles become more like  ELMing H-mode

Changes in v  and Er are similar to those seen in RMP-assisted ELM-free H-mode
at e* ~ 1 which also displays small, rapid ELMs/events

suggests that Er/velocity shear changes may regulate the transport response to the
RMP, and therefore the ELM stability by altering p
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Onset of small ELMs as ne
ped rises is correlated with

decay of pedestal v  and degradation of Er well.

• As ne
ped rises, v  and Er profiles become more like  ELMing H-mode

Changes in v  and Er are similar to those seen in RMP-assisted ELM-free H-mode
at e* ~ 1 which also displays small, rapid ELMs/events

suggests that Er/velocity shear changes may regulate the transport response to the
RMP, and therefore the ELM stability by altering p
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Onset of small ELMs as ne
ped rises is correlated with

decay of pedestal v  and degradation of Er well.

• As ne
ped rises, v  and Er profiles become more like  ELMing H-mode

Changes in v  and Er are similar to those seen in RMP-assisted ELM-free H-mode
at e* ~ 1 which also displays small, rapid ELMs/events

suggests that Er/velocity shear changes may regulate the transport response to the
RMP, and therefore the ELM stability by altering p

ELMing H-mode

RMP-assisted
ELM-free H-mode
onset of small ELMs 
with RMP & moderate puff

Er (kV/m)

0.80 0.85 0.90 0.95 1.00 1.05
ψn

60

20

-20

40

0

-40

kV
/m

0.80 0.85 0.90 0.95 1.00 1.05
ψn

120

80

40

100

60

20

km
/s

0

-20

vφ (km/s)

ELMing H-mode

RMP-assisted
ELM-free H-mode
onset of small ELMs 
with RMP & moderate puff



Moyer IAEA06 – 22

Onset of small ELMs as ne
ped rises is correlated with

decay of pedestal v  and degradation of Er well.

• As ne
ped rises, v  and Er profiles become more like  ELMing H-mode

• Changes in v  and Er are similar to those seen in RMP-assisted ELM-free H-
mode at e* ~ 1 which also displays small, rapid ELMs/events

• suggests that Er/velocity shear changes may regulate the transport response to
the RMP, and therefore the ELM stability by altering p
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Summary and Conclusions

• Complete ELM suppression has been obtained in ELMy H-modes with
ITER-relevent pedestal electron collisionality e* and ITER-similar
shape (ISS) using an edge-resonant magnetic perturbation.

• ELMs are suppressed by lowering the pedestal pressure gradient below
the Peeling-Ballooning stability limit for Type I ELMs.

• Pedestal pressure gradient reduction is controlled with RMP strength
br

m,n/BT above a shape-dependent minimum of 2.8x10-4 ( ~0.37) to
3.4x10-4 ( ~0.7).

• Pressure gradient is reduced primarily by RMP-induced particle
transport.

• Density fluctuations increase 1.5-2x during RMP, consistent with
increased convective particle transport.

– Fluctuations may play similar role to Edge Harmonic Oscillation in QH-
mode [see P.B. Snyder, this meeting]

– Deff ~ nrms
2 increases 3-4x, consistent with density profile changes

– Suggests that Er/velocity shear changes due to RMP regulate
transport, leading to reduced p and stabilizing ELMs.
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Backup Slides
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126006 3500 ms
δu = 0.359 δl  = 0.705

122338 3500 ms
δu = 0.155 δl  = 0.372

I-coils

• ITER pedestal e* achieved in DIII-

D by divertor pumping

ELM control is a critical issue for burning plasmas.

Loarte PPCF 45 1549

– RMP penetration decreases at lower e*

– Parallel transport increases at lower e* – New lower divertor (2006)
enables pumping high 
lower divertor to achieve
ITER-relevent e*

• WELM/WPED increases as pedestal
collisionality e* drops
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• n = 3 used to minimize core perturbations.

• 9 < m < 15 Fourier harmonics form edge stochastic layer.

The DIII-D I-coil provides a flexible system for n=3

ELM control experiments

• Mixing with fixed intrinsic field errors

- tor = 0° or 60° gives different levels of stochasticity

- Br for segment pairs in the same or opposite direction ( “even” & “odd” parity)

– Can use n=3 C-coil perturbation to boost n=3 br  
3,m
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I-coil parity controls pedestal island overlap

• Both parities suppress ELMs

– Odd (weak RMP)  small islands  little or no change in pedestal

– Even (strong RMP)  stochastic  transport / pedestal control
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Low collisionality e* ~ 0.1
• Pedestal is substantially more

stochastic
– Remnant island at q=3

nearly destroyed
– Remnant islands at q=10/3, 4

completely destroyed
• Less drag because of randomness

of field line orientation?

I-coil parity controls level of island overlap and

stochasticity.

Moderate collisionality e*  1
• remnant islands mix with field error

spectra
– resonances at q=3, 10/3, & 4

with evidence for higher
harmonics

• Edge toroidal rotation drops
(braking from islands?)

Intrinsic field errors and I-coil 115467.03400 
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The DIII-D I-coil provides a flexible system for n=3

ELM control experiments

• I-coil parity controls pedestal island overlap

– Odd (weak RMP)  small islands  little or no change in pedestal

– Even (strong RMP)  stochastic  transport / pedestal control

• We focus on n=3 even parity  strong edge resonant harmonics

– Vacuum field island widths indicate overlap over plasma boundary in the

absence of screening by beta or rotation
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ELMs eliminated when resonant q95 condition satisfied

with lower = 0.36 & e*~0.1

Evans I5.005

• 4.0 > q95 > 3.7  small, high frequency ELMs  no large impulses

• 3.7 > q95 > 3.4  no ELMs

• Following RMP pulse large ELMs return with ~250 ms delay
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q95 resonant window in ITER Similar Shape (ISS)
with lower = 0.7 is narrower than for lower = 0.37.
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Transport regimes regimes depend on ordering of

mfp, Lcorr, Lwall (Rechester-Rosenbluth)

• Stochastic layer: collisionless transport

– long field lines, stochasticity dominant

• Stochastic layer: collisional transport (fluid limit)

– long field lines, both stochasticity & collisions active

• SOL: collisional transport (fluid limit)

– short field lines, collisions dominant

• SOL: collisionless parallel transport

– very short field lines

Lcorr << mfp ,Lwall DRR = Dstvth

mfp << Lwall << Lcorr
L

Lwall
=

||

mfp << Lcorr << Lwall RR =Dst || Lcorr

Lw << mfp,Lc
L

Lwall
=

Lwallvth
=

mfp

Lwall ||
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RMP induces magnetic diffusion and fractal structure

in outer stochastic layer

• Color = # toroidal transits for escape (red=201 max, black<10)
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E3D: 2 fluid transport code for ergodic 3D fields
see A.M. Runov P1-63 2006 PSI Mtg. (JNM in press 2007)

Solves Braginskii fluid equations in static background field

• Energy equation:

• Parallel momentum: (alpha testing)

• Continuity: (quasineutral)

• Sheath BC’s: (nonlinear, R. Chodura)

tn+ ||nu|| = Danom n

mn tu|| +
u||
2

2( ) = qE|| ||p+ || + anom

3
2 n( tT +u|| ||T ) = || || ||T + anom T || ||u|| +Q

= nCs cos w ~ nT
1/2 Q = nTCs cos w ~ nT

3/2
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E3D: efficient Monte-Carlo 2 fluid code

designed for TEXTOR DED, W7-X, etc.

• Heat transport highly anisotropic

– Stochasticity can generate small scales

• Simple finite elements cannot

   capture anistropy

– Requires high order/adaptive

– May not capture 3D complexity

• Solution: Monte-Carlo technique

– Let T(x,t) = probability distribution function for heat packets

– Use Brownian motion to describe evolution

|| / = || / ~ 108 1010

  
l Lc ~ || ~ 10

4 10 5

A.M. Runov P3-63, 2006 PSI, JNM 07 in press
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Te profile follows homoclinic tangle

“Separatrix” = intersection of invariant manifolds
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Xpt-TV experimental observations of “homoclinic tangle”
confirm penetration of RMP at least into last few % in n.

• Te should reflect a superposition of both invariant manifolds

• Divertor plate striations often observed in experiment

123301: filtered D  Xpt-TV

123300: filtered CIII Xpt-TV
TRIP3D
Poincaré
plot
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Magnetic footprint striations often observed during

I-coil pulse 

filtered D  Xpt-TV:

123301 2170 ms

TRIP3D prediction:
123301 2170 ms inner strike point

• Divertor strike pattern can be used to validate field model

M. Fenstermacher I-8, M. Groth P1-12

2006 PSI Mtg. JNM in press (2007)
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As I-coil : edge temperature cools 
122342 at 4650 ms BC’s: Te= 1.6 keV,  Ti= 2.6 keV at n = 77%

• Constant temperature BC’s

• Edge stochastic layer cools relative to pedestal

– remains hot compared to SOL

Te
Ti
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RMP application increases density fluctuations

overall, including pedestal broadband turbulence
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RMP-assisted ELM-free H-modes have shallower Er

wells than QH-modes

• Er positive out to wall in both ELM-free plasmas; plasma potential  1 kV at wall.

•  Er shear near separatrix higher in QH modes.

Evans I5.005
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RMP ELM-free H-modes and QH modes both stable

and near peeling boundary

• Strong shaping allows access to higher P such as in QH-modes

• P-B stability boundaries are a strong function of plasma shape

– At present RMP ELM-free discharges can not access low e* in strongly
shaped plasmas (because of pump location)

• In 2006, low e* RMP ELM-free operations in strongly shaped plasmas will be
investigated

Schematic P-B Stability Diagram
[P.B. Snyder, H.R. Wilson PoP2002]

Shaping: RMP weak, QH strong

Evans I5.005
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Edge Resonant Magnetic Perturbations (RMPs) have

been used to eliminate large ELMs in in DIII-D

P.B. Snyder, next contrib.

oral BO3.00009

T.H. Osborne, H-mode Workshop ‘05; Poster CP1.00004

M.E. Fenstermacher, Poster CP1.00003
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• Large ELMs can be
eliminated by reducing
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essentially unchanged

– Large ELMs are
replaced by smaller,
more continuous
events (Type II ELMs?)



Moyer IAEA06 – 44

Edge RMP suppresses large ELMs without always

significantly lowering pTOT.

P.B. Snyder, next contrib. oral BO3.00009
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Edge RMP suppresses large ELMs without always

significantly lowering pTOT.

• Small changes to pTOT  always
within error bar of peeling-
ballooning bndry.

P.B. Snyder, next contrib. oral BO3.00009
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Edge RMP suppresses large ELMs without always

significantly lowering pTOT.

• Small changes to pTOT  always
within error bar of peeling-
ballooning bndry.

• I-coil changes pTOT peak,

width, & location  alters

stability as planned.

P.B. Snyder, next contrib. oral BO3.00009
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I-coil RMP has largest effect on density profile, not

Te profile.

• Not consistent with stochastic layer transport models .

• Pedestal pressure decreases with increasing I-coil current

Ti
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Pedestal thermal energy loss is correlated with bursts of

magnetic fluctuations.
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Pedestal thermal energy loss is correlated with bursts of

magnetic fluctuations.

• At e* ~ 4, enhanced small events
 MHD mode 

transport duty cycle increases
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Pedestal thermal energy loss is correlated with bursts of

magnetic fluctuations.

• At e* ~ 4, enhanced small events
 MHD mode 

transport duty cycle increases

• At e* ~ 0.2, no small events 

quiescent  stochastic transport

and/or turbulence
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Recovery of pedestal P to marginal stability slowed

by small events during I-coil perturbation.

• Pedestal  pressure PPED & current JT
PED

similar after Type I ELM

• PPED & JT
PED > before Type I ELM with I-

coil.

• Pedestal width > with I-coil

Osborne EPS 05 and this meeting

• Pedestal pressure gradient PPED

recovers to marginally stable level more

slowly

14 ms (I-coil off)  64 ms (I-coil on)
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Density fluctuations in the pedestal change.

• At e*  4, ñrms ~ constant, but more
intermittency due to small ELM-like
events

L. Zeng
CP1.00009

• At e*  0.2, ñrms increases as
ELMs stop

• coherent modes in core
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J.A. Boedo et al. this meeting
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Intermittent transport during I-coil broadens the

SOL and increases particle flux to wall

• Intermittent SOL transport increases during I-coil pulse.
• For e*  1, burst freq. increases 2 , amplitude increases 2–3

• radial particle flux increases 2–3

• Increased power and particle flux to main chamber wall instead

of divertor.
Reciprocating probe Isat near outer midplane
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Even parity I-coil: ELM-free H-modes at ITER-relevant e*
T. E. Evans, K. H. Burrell, M. E. Fenstermacher, et al., Phys. Plasmas, in press.

• Low density

e* ~ 0.1

• Type-I ELMs
vanish within
resonant q95-
window

• Edge rotation
increases after
ELMs dissapear

• Plasma maintains equilibrium for long times (unlike usual ELM-free)

• Steady-state transport must replace ELM transport
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Odd parity I-coil: Type-I ELM-suppression
R. A. Moyer, T. E. Evans, T. H. Osborne, et al., Phys. Plasmas 12 (2005) 056119.

• High density

e* ~ 1

• Type-I ELMs
replaced with small
Type-II grassy
ELMS?

• Edge rotation
decreases
immediately after I-
coil is energized

• Rotation damping taken as a sign of field penetration


