Theory of Alfvén waves and energetic particle physics in burning plasmas

Theory of Alfvén waves and energetic particle physics in burning plasmas*

21.st IAEA Fusion Energy Conference, Chengdu, China, Oct. 16-21, 2006

Liu Chen

Dept. of Physics and Astronomy, Univ. of California, Irvine CA 92697-4575, U.S.A.

> Acknowledgments: G.Y. Fu, N.N. Gorelenkov, Y. Todo, G. Vlad *In collaboration with Fulvio Zonca. Supported by US DOE and NSF

Outlines

- (I) <u>Introduction</u>
- (II) <u>Linear Shear Alfvén Wave (SAW) and Energetic Particle (EP)</u> <u>Physics</u>
 - (II.1) SAW Spectrum: Continuum and discrete modes
 - (II.2) Instability Mechanisms
 - (II.3) Stability Properties: Generic fishbone dispersion relation

(III) Nonlinear SAW-EP Physics

- (III.1) Nonlinear physics of Alfvén Eigenmodes (AEs)
- (III.2) Nonlinear physics of EP Modes (EPMs)
- (IV) ITER Applications
- (V) <u>Summary and Discussions</u>

(I) Introduction

- Energetic particles (Alpha particles and/or fast ions) integral components of current and ITER burning plasma experiments.
- $V_{EP} \sim V_A$ (Alfvén speed) \Rightarrow Collective excitations of SAW by EPs.
- Superthermal SAW fluctuations \Rightarrow Break EP's adiabatic invariants; J and $\Psi(\mathbf{r})$.

 \Rightarrow Anomalous transports (redistribute) in EP's $\left(\varepsilon = \frac{v^2}{2}, r\right)$ phase space

 \Rightarrow Potentially significant adverse effects on the performance of burning plasma experiments.

IAEA FEC 2006 Liu Chen

(II) Linear SAW-EP Physics

- (II.1) SAW spectra in toroidal plasmas
 - SAW Anisotropic electromagnetic wave in magnetically confined plasmas

$$\circ \quad \omega^2 = k_{\parallel}^2 V_A^2 \equiv \omega_A^2, \ k_{\parallel} = \underbrace{k \cdot B}_{a} B, \ \underbrace{V_g}_{a} = V_A \underbrace{B}_{a} B$$

$$\circ |\omega_A| << \Omega_i; \ \lambda_{\parallel} \sim R; \ \lambda_{\perp} \sim \rho_i - a.$$

- Nearly incompressible
- SAW Fundamental oscillations in laboratory as well as solar/interstellar/magnetosphere plasmas. Important dynamic roles in, e.g., solar corona heating, accelerating aurora electrons
- In toroidal plasmas: Non-uniformities across the magnetic surfaces

 $\Rightarrow k_{\parallel} = k_{\parallel}(r), V_{A} = V_{A}(r) \Rightarrow \omega_{A}(r) \Rightarrow \text{ SAW continuous spectrum}$

- (II.1) <u>SAW spectra in toroidal plasmas</u> (continued...)
 - <u>Consequences of SAW continuum:</u>
 - Initial perturbations: $\exp[i\omega_A(r)t] \Rightarrow$ perturbations with a finite width Δr decay via phase mixing on a time scale

$$\tau_{pm} \sim \left| \frac{d\omega_A}{dr} \Delta r \right|^{-1}$$

• Driven perturbation at frequency ω_o

 \Rightarrow "Singularly" absorbed at the resonant layer $\omega_o^2 = \omega_A^2(r_o)$

- \Rightarrow Resonant absorption (continuum damping) rate $\propto \frac{d\omega_A(r_o)}{dr}$
- ⇒ H. Grad [1969]: phase-mixing and singular absorption exact analogy with free-streaming and Landau resonance in Vlasov plasma
- ⇒ Kinetic (ρ_i, m_e) and resistivity effects ⇒ regularizing the "singular" structures
- \Rightarrow Kinetic Alfvén wave, radiative damping, etc.

- SAW frequency gaps:
 - Various <u>poloidal asymmetries</u> ⇒ break translational symmetries along **B** into corresponding <u>lattice</u> <u>symmetries</u>.

 \Rightarrow Corresponding <u>frequency gaps</u> in SAW continuum.

(II) Linear SAW-EP Physics

(II.2) Instability Mechanisms

- For SAW waves in $\beta <<1$ plasmas $\Rightarrow \delta E_{\parallel} \approx 0, \ \delta B_{\parallel} \approx 0$ $\Rightarrow \text{EP experiences } \left(V_{a} \times \delta B_{a} \right) \text{ force; } V_{a} = \text{ magnetic drifts.}$
- Resonance conditions
 - Circulating particles: $\omega k_{\parallel}v_{\parallel} p\omega_t = 0$, p=integers, ω_t : transit frequencies.
 - Trapped particles: $\omega \overline{\omega}_d p\omega_b = 0$ p=integers, $\overline{\omega}_d$: toroidal precessional frequency,

 ω_b : bounce frequency.

IAEA FEC 2006 Liu Chen

(II.2) Instability Mechanisms (continued...)

• Expansion free energy

• Growth rate
$$\sim \dot{P}_{\phi} \frac{\partial F_{EP}}{\partial P_{\phi}} \sim n \frac{\partial F_{EP}}{\partial r}$$

n: toroidal mode number

- Instability drive maximizes around $k_{\perp}\rho_{EP,d}$, $k_{\perp}\rho_{EP,b} \sim O(1)$
- Background plasmas provide additional kinetic damping.

(II) Linear SAW-EP Physics

(II.3) Stability Properties

- To nullify/minimize continuum damping \Rightarrow localize SAW excitations inside the gaps and/or around $\frac{d\omega_A}{dr} = 0$.
- EP pressure perturbations ⇒ instability drive ⇒ coupled to SAW vorticity equation via *B* curvature.
- Perturbations generally consist of singular (inertial) and regular (ideal MHD) mode structures
 ⇒ Generic Fishbone Dispersion Relation

$$i\sqrt{\Lambda^2(\omega)} = \delta \hat{\mathbf{w}}_f + \delta \hat{\mathbf{w}}_K.$$

Theory of Alfvén waves and energetic particle physics in burning plasmas

(II.3) Stability Properties (continued...)

Generic Fishbone Dispersion Relation

$$i\sqrt{\Lambda^2(\omega)} = \delta \hat{W}_f + \delta \hat{W}_K.$$

- $\Lambda^2(\omega)$: inertial-layer contributions due to thermal particles
- $\delta \hat{w}_f$, $\delta \hat{w}_K$: background MHD and EP contribution in the regular regions.
- $\Lambda^2(\omega) = 0$: accumulation points of SAW continuum.
- Example: Toroidal AE (TAE) near the lower accumulation point ω_{ℓ} .

$$\circ \quad \Lambda^2(\omega) \Rightarrow \omega_\ell^2 - \omega^2 \, , \, {\rm formally} \,$$

Theory of Alfvén waves and energetic particle physics in burning plasmas

(II.3) <u>Stability Properties</u> (continued...)

- Two types of modes
 - Gap Mode (AE) $\Rightarrow \operatorname{Re}(\Lambda^2) < 0 \Rightarrow \operatorname{Re}(\delta \hat{w}_f + \delta \hat{w}_K) > 0.$
 - \Rightarrow "localization" of AE in the frequency gap.
 - \Rightarrow Re($\delta \hat{w}_{\kappa}$): Non-resonant EP effects.
 - ⇒ various effects in $\operatorname{Re}\left(\delta \hat{w}_{f} + \delta \hat{w}_{k}\right)$ can lead to AE "localization" in various gaps ⇒ AE "zoology"!!
 - Continuum mode (EPM) $\Rightarrow \operatorname{Re}(\Lambda^2) > 0 \Rightarrow$ EPM inside the SAW continuum
 - \Rightarrow EPM existence: $Im(\delta \hat{w}_k) > \sqrt{\Lambda^2}$.

EP instability drive > continuum damping

- $\Rightarrow \omega_{EPM} : EP's characteristic dynamic frequencies; \\ \omega_t, \overline{\omega}_d, \omega_b .$
- Similar pictures could also emerge around the upper SAW accumulation point

(II.3) <u>Stability Properties</u> (continued...)

• "Classical" example of EPM: Fishbone instability.

- Lower-frequency SAW gap
 - $|\omega| \sim |\omega_{*i}| \sim |\omega_{ii}|$ of thermal ions
 - \Rightarrow (ideal MHD) accumulation point (at $\omega = 0$) shifted by thermal ion kinetic effects
 - \Rightarrow New low-frequency gap!
 - Diamagnetic drift: KBM
 - Parallel ion compressibility: BAE
 - ∇T_i and wave-particle resonance: AITG
 - \Rightarrow unstable SAW accumulation point
 - \Rightarrow "localization" \Rightarrow unstable discrete AITG mode!

Experimental Observations of AEs

- TAE well documented [Heidbrink et al.]
- Reverse shear AE (RSAE/AC) [Nazikian et al.,]

 \Rightarrow up to $n \sim O(40) \Rightarrow k_{\theta} \rho_i \sim O(1)$

⇒ demonstrate the destabilization of RSAE/AC via the AITG mechanism.
FIR scattering 1-3

Observation of sea of RSAE/AC Alfvén Eigenmodes in DIII-D

> R. Nazikian, et al., PRL **96**, 105006, 2006

JCIrvine

JCIrvine

Theory of Alfvén waves and energetic particle physics in burning plasmas

A "Sea of Core Localized Alfvén Eigenmodes" Observed in DIII-D Quiescent Double Barrier (QDB) plasmas

• Bands of modes m=n+l, $l=1, 2, ... = \omega_{n+1}-\omega_n \approx \omega_{rot}$ (CER)

UNIVERSITY OF CALIFORNIA

Neutral beam injection opposite to plasma current: V ≈0.3V A

R. Nazikian, et al., PRL 96, 105006, 2006

(III) Nonlinear SAW-EP Physics

(III.1) Nonlinear Physics of AE

rvine UNIVERSITY OF CALIFORNIA

- o Weak instabilities $\Rightarrow \frac{\gamma}{\omega} \sim 0(10^{-2}) \Rightarrow$ weak nonlinear perturbations.
- (i) <u>Wave-Trapping Physics [Berk, Breizman, et al.]</u>

o Single linear TAE + nonlinear resonant EP

⇒ analogy to the single-wave bump-in-tail paradigm

 $\mathbf{O} \qquad \boldsymbol{\omega}_{T\!A\!E} \rightrightarrows \boldsymbol{\omega}_{pe} ; \boldsymbol{P}_{\phi} \rightrightarrows \mathbf{v} \qquad \boldsymbol{F}_{EP}(\boldsymbol{P}_{\phi} \big| \boldsymbol{\mu}, \boldsymbol{J}) \rightrightarrows \boldsymbol{F}_{b}(\mathbf{v})$

- o Include background dissipation and restoring $F_{\rm b}$ via collisions (or $F_{\rm EP}$ via source inputs)
- o Wave trapping of resonant EPs
 - \Rightarrow hole/clump production in $F_{\rm b} \Rightarrow$ sidebands generation
 - ⇒ Theoretical explanation of JET observations of pitchfork splitting of ω_{TAE} [Fasoli, et al.]

Theory of Alfvén waves and energetic particle physics in burning plasmas

Pitchfork splitting of TAE in JET

(III) Nonlinear SAW-EP Physics

(III.1) Nonlinear Physics of AE (continued...)

- (ii) Nonlinear Frequency Shifts
 - o Single TAE \Rightarrow (n = 0, m = 0) zonal flows/fields and/or

 $(n=0,m=\pm 1)\delta B$ and δn .

- \Rightarrow radially local nonlinear equilibrium modifications.
- \Rightarrow narrowing of TAE frequency gap and/or lowering $\omega_{\textit{TAE}}$
- \Rightarrow enhancing continuum/radiative damping.
- o Simulations (Todo et al.): n=0 perturbations effective in lower TAE saturation amplitudes

TAE-induced Losses of Fast lons

IFS-NIFS collaboration, 9th IAEA TCM on Energetic Particles (2005)

MHD nonlinearity reduces the saturation level of the dominant (n=4) mode and generates a zonal flow (n=0)

longer (experimentally relevant) time interval.

(III) Nonlinear SAW-EP Physics

(III.1) Nonlinear Physics of AE (continued...)

- (iii) Nonlinear Downward Frequency Cascading
 - o Multiple TAEs \Rightarrow nonlinear ion Landau damping
 - \Rightarrow Cascading to lower-frequency, more stable TAEs.
 - \Rightarrow Enhancing effective continuum/radiative damping.
- (iv) Additional Considerations
 - o Each toroidal-n mode: O(nq) AEs localized at different radial locations
 - o Different-n AEs have nearly degenerate frequencies.
 - ⇒ Within the TAE frequency gap: dense populations of AEs ("lighthouses") with "unique" frequencies and radial locations.
 - ⇒ Significant multiple-TAE nonlinear interactions
 - \Rightarrow Diffusive redistribution of $F_{EP}(\varepsilon, p_{\phi}(r)|\mu)$
 - \Rightarrow AE avalanche: turbulence spreading

(III) Nonlinear SAW-EP Physics

(III.2) Nonlinear Physics of EPM

- Stronger instability drive (to overcome continuum damping) $\Rightarrow \gamma / \omega \sim O(10^{-2} - 10^{-1})$
- $\omega_{EPM} \sim$ characteristic EP dynamic frequencies
- EPM in-situ at where drive $\alpha_{Ep} \propto \beta_{Ep}$ maximizes.
 - \Rightarrow EPM rapidly redistribute $F_{EP}(\varepsilon, P_{\phi})$
- (i) Fishbone Paradigm
 - o n=1 internal kink
 - $\mathbf{O} \quad \boldsymbol{\varpi} \sim \overline{\boldsymbol{\varpi}}_{db}$
 - o Simulations [Fu et al.] : Rapid radial redistribution of F_{EP} saturation and downward frequency chirping.

Hybrid MHD-GK simulations of fishbones G.Y. Fu, et al. POP 13, 052517, (2006)

As flattening region of distribution function increases, the mode frequency chirps down.

G.Y. Fu, et al. POP 13, 052517, (2006)

IAEA FEC 2006 Liu Chen

Hybrid MHD-GK simulations of ALE on JT-60U G. Vlad, et al., IAEA FEC 2006, TH/P6-4

(III.2) Nonlinear Physics of EPM (continued...)

- (ii) EPM at the TAE range
- Abrupt Large Event (ALE) in observed JT 60U [Shinohara et al.]
- Simulations [Vlad et al.] : n = 1 EPM redistributes F_{EP} radially

(III.2) <u>Nonlinear Physics of EPM</u> (continued...)

- (iii) <u>EPM Avalanche paradigm</u>
 - o Strong EP drive \Rightarrow EPM localized at β_{EP} ' max
 - o Convective radial transport of EP
 - o Radial propagation of EPM turbulence via couplings between poloidal harmonics

⇒ Propogation of EPM "unstable" front (EPM-Avalanche)

(III.2) Nonlinear Physics of EPM (continued...)

(iv) Analytical description [Zonca et al.]

$$\mathbf{o} \quad \Rightarrow \quad D_{EPM}^{\ell} \left(-i\omega + \partial_t, \partial_r, r \right) A(r, t) = \delta \hat{W}_k^{n\ell} \left(\partial_t, \partial_r, r, |A|^2 \right) A(r, t)$$

 \Rightarrow Radial convective amplication

 \Rightarrow Source propagation

o Consistent with simulations

(v) Additional Considerations

- o EPM has stronger n dependences $(\overline{\omega}_d \alpha n) \Rightarrow$ narrow unstable spectrum in n
- o Single-n dynamics dominates the initial rapid convective phase
- o Reduced instability drive \Rightarrow AE dynamics.

- α particles + fast ions ⇒ unstable AE and/or EPM in ITER in various scenarios. [Gorelenkov et al.; Vlad et al.]
- Unstable n spectrum: $n_{\text{max}} \sim O(10-20)$
 - \Rightarrow Dense AE "lighthouse" spectrum in (ω ,r)
 - \Rightarrow Significant implications to the nonlinear AE physics!

• Global nature of the TAE can cause alpha loss

- Nominal plasmas are close to thresholds for alphas losses based on quasilinear marginal stability postulate (Gorelenkov,'05)
- Reversed shear scenario plasmas is more TAE unstable with n from 1 to 7 and with ~2% growth rate.
- The most unstable modes are localized at the strongest fast ion pressure gradient

26

AE/EPM Transport in ITER (G. Vlad, et al., NF 46, 1, 2006)

- Global Hybrid MHD-Gyrokinetic simulations of ITER operation scenarios: SC2(normal shear), SC4 (reversed shear), SCH (hybrid scenario).
- Assuming only fusion alphas, AE are marginally unstable in all scenarios.
- Only SC4 (reversed shear) shows significant broadening of the alpha particle profiles at nominal values of alpha particle power density.
- EPM are excited in SCH above a threshold ~1.6 the nominal value of alpha particle power density.

(V) Summary and Discussions

- Linear physics well at hand.
- Still need comprehensive linear code to accurately evaluate the stability properties.
- ITER (alpha + fast ions) ⇒ SAW excitations ⇒ consequences on EP transports remain uncertain.
- Key nonlinear physics mechanisms identified and some "verified" either by customized simulations and/or experimental observations.
- Multi-n simulations up to n ~ 0(10-20) with accurate background kinetic damping, realistic geometries, and boundaries needed to push forward this area.
- In the longer time scales, interactions between SAW-EP dynamics and Drift/Alfvén-thermal particles dynamics will emerge

 \Rightarrow challenging multi-scale physics.

(V) Summary and Discussions

- SAW EP research \Rightarrow
 - Intellectually challenging (complexities in geometries and nonlinearities) and programmatically important
 - Strong and healthy positive interplays among experiments, theory and simulations!!
 - Electron-fishbones via $\omega = \overline{\omega}_d$ resonance [this Conference] also shed interesting physics insights.

