Recent Progress of FIREX Project and Related Fusion Researches at ILE, Osaka

Kunioki Mima Institute of Laser Engineering, Osaka University IAEA-FEC 2006, Oct. 18, at Chengdu, China

1

Back ground and outline of this talk

- Fast Ignition Research was selected as one of the 4 main fusion projects of Japan in 2003.
- FIREX (Fast Ignition Realization Experiment) project has started in 2003 as a collaboration program among Osaka Univ., NIFS, and other universities.
- 1) Introduction
- 2) Present status of FIREX project
- 3) Recent related topics
- 4) Future plan

Fast ignition is attractive because of high gain with a smaller laser

ILE OSAKA

Fast ignition: Processes for compression and ignition are separated.

FT/P5/39: T.Norimatsu

600g/cc implosion and high efficiency heating of imploded target to 1keV

Azechi, Laser & Particle Beams 1990

Wavelength: 1053 nm (Nd: glass laser) Pulse energy: 10 kJ Pulse width: 1-20 ps (FWHM) 10 ps (typical) Pulse shape: trapezoid with <2 ps rise time

Focal spot: 20-30 µm (≥50 % encircled energy)

Option: 10 kJ/1 ps, 5 kJ/0.5 ps (for high-field science) (Ion driven fast ignition)

FIREX-I Project Milestone

F. Year Laser construction

- 2003 FIREX-I laser construction started
- 2005 Completion of amplifier
- 2006.5 14.4kJ out-put energy
- 2006.11 Compressorbeam alignment
- 2007.7 1 beam experiment
- 2008.3 4 beam experiment
- 2009
- 2010

1) Cryogenic foam shell cone target fabrication and implosion test

plasma exp. & target fabrication

- 2) Completion of FI3 and cone target design
- D_2 exp. ~2kJ input
- D_2 exp. ~10kJ input
- D₂ 5keV heating
- DT experiment aiming at Q=0.1

Present status of heating laser construction

05.5.17 1.2 kJ/1 beam 06.5.19 3.6 kJ/1 beam (Full beam equivalent =14.4 kJ)

32.5 cm

LE OSAKA

FIREX-target R&D

NIFS

Cryogenic target for FIREX-I

-Foam cryogenic shell with Cone and DT fill tube-

Present achievement; Fill tube diameter:30μm^φ Foam density: 100mg/cc, working gas: D₂

Rear surface temperature before the shock arrival

• Degradation of cryogenic target compression will be due to non-uniformity.

FI³ Project Fast Ignition Integrated Interconnecting code

PINOCO-2D Radiation-Hydro code

Bremsstrahlung Emission Profile of 2-D Fluid Simulation agree with experimental result (2D-SIXS).

Simulation (PINOCO) $n_e^2 x T^{1/2}$

Experiment (tempral x-ray image at GXII, 2D-SIXS, Lee, et al)

FIREX-I target design

Cone tip can survive till the maximum compression time.

Petawatt laser absorption and electron generation are sensitive to preformed plasma scale length

LE OSAKA

Fast ignition experiments (Nature,2002,ILE and UK) are reproduced with ~1µm scale length

(Fokker Planck simulation combined with Hydro and PIC code)

LE OSAKA

Note that delayed heating is found very important.

A New Fast Ignition Scheme : "Impact Fast Ignition"

M. Murakami etal Nucl. Instrum. Meth. Phys. Res. A 544, 67 (2005).

IF/1-1; H.Azechi: Fast ignition research in collaboration with NRL

Experimental results

Neutron yield is enhanced by the impact of hemispherical CD.

Schematic of the impact heating experiment

Main: 2ω , E = 3 kJ CD shell 7 μ m^t Diameter = 500 μ m^{\$} Impactor: 2ω , I < 200 TW/cm² Hemispherical CD 10 μ m^t Disameter = 500 μ m^{\$}

Neutron yield with impact is about a hundred times as large as that without impact.

FIREX-I

Plan of FIREX Project

NIF ignition ¹⁹

Summary

- Fast ignition researches in FIREX-I have been progressing. We plan that one beam experiment in 2007 and full beam experiments will in 2008.
- Construction of peta watt laser for FIREX-I is in final stage.
- Foam cryogenic cone shell target has been fabricated.
- Preheating level of a foam cryogenic D_2 later is controlled by adding a thin high Z layer.
- Integrated simulation code for fast ignition was developed. The simulation code with Kodama Exp. (Nature '01)and recent experiments is successful.
- The simulations indicate $\rho r = 0.2 \text{ g/cm}^2$ and T=5keV, 20% heating efficiency which mean Q=0.1 and N_v =10¹⁵.
- A new fast ignition concept "impact fusion" is tested by recent experiments

Relevant presentations (October 19th Thursday)

ILE OSAKA

- IF/1-1; H.Azechi, FIREX program Plan and Experiment
- IF/1-2R; K.A.Tanaka, Relativistic electron physics for Fast Ignition
- IF/P5-1; A.Iwamoto, Foam cryogenic target fabrication
- IF/P5/2; N.Miyanaga, Laser R&D and Construction for FIREX-I
- IF/P5-3; M.Murakami, Impact Fusion (New F.I.)
- IF/P5-4; H.Nagatomo, Integrated Fast Ignition code and experimental analysis
- FT/P5/39: T.Norimatsu, KOYO-F reactor conceptual design
- FT/P5/40; J.Kawanaka, IFE Driver Cooled Yb: YAG Ceramics Laser