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•Recent Progress on: (see cited works in paper)

1. Coupling of reconnection and resonant-q to inverse
cascade in DWT

2. Theory of turbulence spreading
– spatial transport ↔ spectral transfer
– ballistic spreading ↔ fast transients

3. Non-diffusive transport of toroidal momentum
– k|| symmetry breaking by
– diffusion, ‘pinch’, torque contributions to flux

4. L-H transition
– exact analytical solution of minimal model
– implications for pedestal width

time limitation ⇒ single focus



•Electrostatic Convective Cells, Low-q
Resonances and ITBs

- requirements of the theory ⇒ electrostatic convective cells

- Scenario: ITB formation

- motivation
experimental and simulation results

multi-scale theory

Ackn: K. Burrell, B. A. Carreras, X. Garbet, T.S. Hahm, F. Hinton 

- models
   secondary vortex cell    

strong harmonic coupling

      localized
      fluctuation
      profile
      inhomogeneity
{



→message for MFE:

– q profile improves performance

– power ↔ q profile trade-offs possible

→many candidate mechanisms:

– magnetic islands, localized topology
changes

– energetic particles ↔ electric fields

– rarefaction of rational surfaces

– ‘zonal flows’ ↔ corrugations

→popular conceptual paradigm:

– local flattening + adjacent steepening

(Joffrin `03)

•ITB at low-q resonance widely observed, especially
in off-axis minimum q (OAM-q) discharges



→no magnetic signal detected at
ITB formation

→         variation:
− steepens before qmin=2
− flattens at qmin=2
− steepens after qmin=2

•Recent Experiments on DIII-D
(Austin, Burrell, et. al.)

→GYRO simulations (Waltz, Candy `06):

−exhibit profile ‘corrugations’ at q-resonance

−indicate “zonal flows” correlated with corrugation structure

−suggest zonal flows as ITB trigger

→sufficient         required for ITB formation

(Austin, et. al. `06)



•Critical Issues

→ Answer must address coexistence of:

1) region of profile flattening at resonant surface

⇒ region of localized mixing, transport

2) barrier formation nearby resonance

⇒ neighboring region of strong shear flow

→    Broader theoretical theme: “Multi-scale Problem”

→The question:
    Why are shear flows linked to resonant-q surfaces?

‘inverse cascade’ in
drift wave turbulence resonant q



•Multi-Scale Problem: General Structure

→ Interaction self-consistent description of large scale ↔ small scales

{

→Key Physics (McDevitt, Diamond `06):
→Tearing couples to generic inverse cascade in DWT via ions, as
    well as turbulent dissipation, transport via electrons
→Multi-scale interaction ↔ ‘negative viscosity’ phenomena

Zonal flow + DWT ⇒ confinement
Tearing mode + DWT ⇒ NTM

i.e.



•Multi-Scale Problem: Limiting Case

→natural question: What happens to tearing + DWT problem

in limit ∆′<<0?

→ equivalent: What type of structure can form at resonant

surface in MHD-stable limit?

→Answer, for simple model:

     Secondary vortex cell!

− electrostatic convective cell   (Dawson, Sagdeev)

− finite-m analogue of zonal flow

− driven by modulational instability

− seems relevant to ITB in OAM-q ...



•Critical Issues, revisited
→ Q: How to link shear flows and resonant-q?

        A: Via electrostatic convective cells!

→ Possible Mechanisms:

a) secondary vortex cell (McD & D, `06)
– radial scale ↔ regulated by magnetic shear

– vr≠0  → profiles mixed near resonance

– turbulence sheared by flow

– especially relevant → weak magnetic shear

b) strong harmonic coupling (Carreras,
Diamond et. al. `92)
– nonlinear interaction of many co-located

harmonics at low-q surface

– local peak in turbulence intensity, transport

– dipolar shear layer

– relevant in weak and normal magnetic shear



•Secondary Vortex Cell - Theory I

→ ‘minimal model’

– large scales:

– for electrostatic DWT:

→Key effects:
–modulation
  shearing

ala’ zonal flow feedback, with m≠0}
– localization by magnetic shear

Reynolds stress



•Secondary Vortex Cell - Theory II

→ two scale analysis + wave kinetics for DWT ⇒

→elements:
−drive → ‘negative viscosity’ from modulational instability

for

→             decreases for large qx

–damping → friction, collisional viscosity
–localization → field line bending ↔ magnetic shear, m-dependence
⇒profile ‘corrugation’, flat spots wider for weak shear
⇒consistent with GYRO simulations

;



•Secondary Vortex Cell - Theory III

→ ‘predator-prey’ structure, ala’ Reynolds stress driven shear flow

→Eigenvalue ⇒ fluctuation intensity threshold to excite cell

→Dependencies of critical intensity:
−decreases for weaker shear → OAM-q?!
−increases with νc → synergy with magnetic shear
  i.e. field line bending localizes cell ⇒
  thinner cell sensitive to viscosity
−increases with m → low order rationals preferred

frictional damping shear and viscous damping



•Secondary Vortex Cell - Theory IV

–cell flow shear profile

⇒transport suppression more effective off resonant surface

∴ secondary vortex satisfies dual requirements of:
−profile flattening at resonance
−shearing near resonance

–radial cell scale

→Cell structure:
− potential profile (asymptotic)

⇒ flow shear stronger off resonance



•Resonant Harmonic Coupling - Theory I

→Low-q resonance ⇒ many co-located resonant harmonics

→ Implications (Carreras et. al. `92)

− local maximum in fluctuation intensity

− single helicity interaction stronger than usual multiple
helicity, “turbulent” couplings

⇒ intensity profile fine structure develops

Resonant mode distribution Intensity Profile peaked on resonance



•Resonant Harmonic Coupling - Theory II

→ strong single helicity interaction at resonant-q modifies

coupling to dissipation damping

⇒novel structure, dynamics!?

⇒unexpected effects of shearing

→ effect occurs both for normal and weak magnetic shear

→Key question: How ‘low’ is ‘low-q’?

− compare SH and MH interaction ⇒

− criterion:



•Resonant Harmonic Coupling - Theory III

→previous analysis did not address

Reynolds stress-driven flow shear

→ flow ~ intensity profile gradient

⇒ideal for dipolar shear layer near qres

→extension to include self-generated shear flow straightforward

    ala’ Diamond, et. al. `94

→Key result: fluctuation intensity required to drive flow



•ITB Formation I

→ sheared flow of electrostatic convective cell as ‘trigger’

for ITB formation

→ two stage process: (Diamond, et. al. `94)

1.           drives flow ⇒

2. fluctuations quenched ⇒

                steepen 
fluctuations reduced{

flow damps away
        from  {

→ end state is ITB

,

,



•ITB Formation II

→ Important: Flow damping, not γL vs γE×B, sets threshold
for trigger

→Experiments ⇒ Proximity to “usual” transition threshold
required

,  where

 vortex
  cell

harmonic
coupling

}
detailed
quantitative
study 
needed to
discriminate

→ trigger threshold: fluctuation intensity to drive flow
against damping

→power balance and convert transport model to power
threshold, i.e.



•Conclusions

→ electrostatic convective cells viable as trigger for
OAM-q ITB transition

→ cell paradigm physics satisfies requirements:

i. flattening/“corrugation” at low-q resonance

ii. sheared flow near low-q resonance

→ theory of candidate mechanisms examined:

− secondary vortex cell

− resonant harmonic interaction

− NOT MUTUALLY EXCLUSIVE

→ detailed radial structure of intensity profile of DWT is
critical element of underlying physics



•Future Work

→ Simple:

− improve model → structure of collisionless electrostatic cell?
               → Landau damping, etc. → radial scale?

− predict when: transient confinement improvement or ITB
transition

→ flow threshold vs.        transport bifurcation threshold?

→ Not-so-simple:

− improve theoretical understanding of intensity profiles, as in
theory of turbulence spreading (Hahm; this session)

→ extend to encompass q-resonance distribution!?

− explore broader implications of electrostatic cells and q(r)
structure

i.e. origin of observed “choppy profile”? etc.


