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Motivation & Main Results

» Multi-scale turbulence and secondary/tertiary coherent flow structures coexist
in plasmas (MHD; ITG; TEM; ETG:;..... Mean/zonal flows; streamers; KH, GKH
modes; ...... )

» Flow characteristics and interaction mechanisms

Smooth mean flow with zero frequency:
shearing decorrelation

Wave-type flow with low/zero frequency:

nonlinear mode coupling ?
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» Motivation:

Secondary and/or tertiary structures as a wave-type flow interact with turbulence
through a primary mechanism: nonlinear mode coupling

» Main results
» Back-action of zonal flows/long wavelength modes on turbulence deforms the power-law

spectrum into an exponential-law scaling.
> Secondary streamer-like long wavelength modes can saturate ETG turbulence, suggesting
the possibility of a low ETG fluctuation level and electron transport.




Spectral characteristics of turbulence
due to back-action of flow structures



Schematic picture of nonlinear mode couplin

» Ubiquitous nonlinear process: basic four-wave & three-wave interaction

Modulation instability for flow Nonlinear mode coupling for
generation back-action ?
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» What happens in turbulence with genegation and back-action of strong flow
structures? — spectral analysis

Power-law due to
energy cascade
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Simulations in 2D forced HM model vs GTC

» Forced HM turbulence modeling based on 2D ETG (Free energy system)

» Parameters:
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4 evolution phases: (1)Linear ETG; Mode coupling Gyrokinetic ETG by
(2)Zonal flow enhancement; (3)KH — beat wave performing GTC code

excitation; (4)quasi-steady state ky M ky2 = kyq



Identifying mode coupling due to zonal flows

» k. spectral relation between ETG fluctuations and zonal flows due to nonlinear
mode coupling
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which is damped.




Spectral transition due to KH/GKH mode

2D forced HM modeling Gyrokinetic ETG simulation
ETG simulation by performing GTC code
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(k,~0.4) deform power-law spectrum Exponential-law spectrum is also observed

(t<1500) into exponential scaling(t>1500) after ETG saturation.



Spectral characteristics in 3D slab ETG / ITG

» Simulations with and no zonal flows for comparison
(3-field gyrofluid models: Li/Kishimoto PoP2003, 2004)

3D ETG with enhanced zonal flow
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» Without zonal flows: k_ or k power-law spectrum ¢°(k,) ~ k;
same as theoretlcal estimate & =6.29 [Ottinger & Carati, PRE(1993)]
» With zonal flows: exponential-law ¢*(k.) ~ e=" , almost no change for k, spectrum.

Experimental exponential-law density spectra in Tore Supra, Hennequin, et al. TTF06

Back-action of zonal flows through nonlinear mode coupling may provide a drive

force to deform power-law scaling into an exponential-law dependence



Role of streamer-like long wavelength
structures in ETG saturation



Electron transport vs large-scale flow in ETG

» Several ETG simulations show streamer structures, but transport is different.

» Streamer structure is expected to enhance electron transport. However, what is
its probable role in ETG saturation?

» Assuming wave-type streamer-like long-wavelength mode imposed in ETG
(ignoring k,) g =¢,()cos(k y) k. <<1

» Coupled equs. due to streamer-like long-wavelength mode
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Streamer-like long-wavelength structure + ETG
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Damped
region k,-mode coupling in slab corresponds to toroidal

mode coupllng in tokamak since slab is the local
k, expansion near given g, surface.
Z. Lin/ L. Chen et al. IAEA 2004, PoP2005, PPCF 2005




3D ETG simulation vs long-wavelength mode
n.=6,5s=14,u, =n,=x% =05 L =50p, L =20%p,,L, =27L,
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o > Unstable ETG k,= 0.5 ~0.6

A 107 > produces a beat (weak instability) k =0.1
Q% >» ETG spectrum widened, ETG saturated
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> Two radial peaks with k_~0.8
and 0.35 for k =0.1 mode
» Spectral evolution of ETG turbulence
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Secondary lgng wavelength Interaction
mode is excited with ETG saturation



Excitation of long wavelength mode in ETG

» Hasegawa-Mima turbulence model
(1_Vi)i¢=i¢+[¢,vi¢] Pamp wave 2
ot oy

Pump wave 1

S-wave modulation: 2 pumps, 2 sidebands and flow seed

¢, = ge™ 1 L c.

Secondary
mode

» Dispersion relation of
modulation instability

F(Qq§$1§$2§121§]€2) =0

> Low amplitude threshold
for modulation instability
» Weak instability with peaks at

k.=0.8 and 0.35
» Wave number matches




ETG saturation due to streamer-like mode

» Streamer-like mode as a beat wave
in pure linear ETG fluctuations
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Time-dependent long wavelength streamer-
like mode interact with ETG modes to
produce k -mode coupling so that ETG is
saturated at lower level.

» ETG saturation level vs intensity
of streamer-like mode
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ETG saturation amplitude inversely
proportional to intensity of streamer-
like mode



Comparison of ETG saturation features

» Same physical parameters and numerical settings:
n.=6,5=14,u, =n,=x,=05, L, =50p,,L, =207p,,L. =27L,

2D linear slab ETG modes +
3D slab ETG turbulence streamer-like beat wave
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2D modeling simulation can well reproduce the main features of 3D ETG
turbulence saturation (amplitude, time evolution

Secondary long wavelength streamer-like flow saturate ETG turbulence through
nonlinear mode coupling!




Summary and conclusion

Nonlinear mode coupling is testified and emphasized as a primary interaction
mechanism in multiple-scale drift turbulence with coherent flows, which are
characterized by wave-type structures. 2D modeling analysis and 3D gyrofluid
slab ETG simulations well produce spectral features observed in gyrokinetic
particle ETG simulation by using GTC code.

Main results:

» Through nonlinear mode coupling , zonal flow or long wavelength KH (GKH)
can deform the conventional power-law k_ or k, spectra into an exponential-law
scaling.

» Secondary long-wavelength streamer-like structure can saturate slab ETG
turbulence at lower level through producing a k -mode coupling, suggesting the
possibility of low electron transport in ETG turbulence.

In addition, the effect of wave-type mean flows on the zonal flow generation in drift wave
turbulence has also been investigated, the results will be presented in our poster: TH/2-3



Thank you'!



