

Studies of the Tokamak Edge with Self Consistent

Turbulence, Equilibrium, and Flows

B. Scott¹, A. Kendl², D. Reiser³, T. Ribeiro⁴, and D. Strintzi¹

¹Max-Planck-Institut für Plasmaphysik, EURATOM Association, Garching, Germany ²Institut fuer theoretische Physik, FZ-Jülich, EURATOM Association ³Institut für Plasmaphysik, FZ-Jülich, EURATOM Association ⁴Centro Fusão Nuclear, EURATOM/IST Association, Lisboa, Portugal

IAEA Fusion Energy Conference, Chengdu, Oct 2006

Physical Situation of the Tokamak Edge

• scale ratios: $R \gg L_T$

$$\hat{\mu} = \hat{M}_{D} \left(\frac{R}{T}\right)^{2} > 1 \qquad \qquad \hat{\beta} = \frac{A}{2} \frac{A}{T} \frac{A}{$$

• gradients and transcollisionality (ions mostly collisionless)

$$1 \sim \frac{T L_{\mathfrak{I}^{\mathcal{U}}}}{v^{\mathcal{U}}} = \hat{\mathcal{U}} \qquad \qquad 2 \sim \int_{i, \mathfrak{I}} \frac{T \operatorname{gol} b}{n \operatorname{gol} b} = i_{\mathfrak{I}, \mathfrak{I}} \eta$$

 $\overset{\sim}{\phi} \| \nabla_{\vartheta_{\vartheta}} n \quad \leftrightarrow \quad \overset{\sim}{\| \widetilde{U} \|} \nabla \quad \leftrightarrow \quad \overset{\sim}{\partial q} \| \nabla \quad : \text{seconstrained} \quad \bullet$

cannot be described by MHD

Energy Transfer: electromagnetic turbulence

(B Scott Phys Fluids B 1992, Plasmas Phys Contr Fusion 1997) (S Camargo et al Phys Plasmas 1995 and 1996)

L-Mode Base Case

- generic ASDEX Upgrade (AUG) L-Mode conditions
- $n_e = 2.0 \times 10^{13} \text{ cm}^{-3}$, $T_e = T_i = 100 \text{ eV}$, B = 2.5 T, R = 165 cm, q = 3.5• profile scale $L_{\perp} = L_T = 3.5 \text{ cm}$ with $L_n/L_T = 2$
- set x-domain width $L_x = 64\rho_s \sim L_{\perp}$ and drift-direction extent $L_y = AL_x$
- GEM: electromagnetic 6-moment gyrofluid for both electrons, ions

(B Scott, Phys Plasmas Oct 2005) — details at poster

- broad band turbulence, energetic range $0.1 < k_y \rho_s < 1$
- scales and transport commensurate with observations NB: no H-Mode
- DED: dynamic ergodic divertor (3-band magnetic field perturbation)
 main effect: 3D perturbed equilibrium, stronger ExB transport

(D Reiser et al, Phys Plasmas 2005) — details at poster

Basic Parameter Scaling

• total ion ExB thermal transport (electron is very similar)

- mangetic flutter: small and negative dynamic EM, transport ES
- delta-f gyrokinetic result is similar with differences (IAEA TM Instabilities, 2005)
- (598/²m 30.0 : linimon) $\perp \Delta / s \sigma_s^2 q \sim \chi$, U gaileds rate-off : sidt to dot no \bullet

Flux Surface Shaping Effects

• ITG transport versus elongation

and triangularity

- elongation: direct effect on local and global shear, shorter effective field lines
- triangularity: weak effect assuming parameters and elongation held fixed

(A Kendl et al, Phys Plasmas 2006)

Zonal Flow Energetics

zonal vorticity radial-k spectrum

- elongation: sharper decay, but stronger at lower frequencies
- elongation: enhancement of zonal vorticity at all radial scales
- more detail: poster

• zonal potential frequency spectrum

(A Kendl et al, Phys Plasmas 2006)

muindiliup3

(B Scott, Contrib Plasma Phys 2006)

- description by gyrofluid equations • description by gyrofluid equations • dissipation free overall fluxes, force balance • slow evolution of zonal state variables • slow evolution of zonal state variables
- Braginskii (collisional fluid equations) correspondence in collisional limit \circ collisional damping of heat fluxes: conduction \circ collisional damping of T anisotropy: parallel viscosity

even equilibrium is outside the Braginskii limit

Self Consistent Equilibrium — Logic

- turbulence, zonal profiles, and zonal flows
- $(1\pm m \text{ bns } 0=n)$ should be labeled of output of the second state of the second s

$$\langle \theta \operatorname{uis} d \rangle \quad \leftrightarrow \quad A \cdot \Delta \quad \leftrightarrow \quad \langle \phi \rangle$$

• sideband pressure and zonal pressure (diamagnetic compression, "neoclassical")

 $\langle d \rangle \quad \leftrightarrow \quad * \mathbf{n} \cdot \Delta \quad \leftrightarrow \quad \langle \theta \operatorname{uis} d \rangle$

• sideband pressure and sideband current (adiabatic compression, "Pfirsch-Schlüter")

$$\langle \theta \operatorname{sos} \| L \rangle \quad \leftrightarrow \quad \| \nabla \quad \leftrightarrow \quad \langle \theta \operatorname{nis} A \rangle$$

keep evolving profiles, keep evolving equilibrium

Energy Transfer: flows and currents

 $Ap/s \gg \omega$:theorem \bullet

$$(\text{vtisoosiv Islieseq}) \equiv \langle \delta n \sin q \delta \rangle \equiv (\text{parallel viscosity})$$

(oiter esem,
$$AJA$$
) = $\langle \theta \operatorname{nis} \phi \rangle + \langle \theta \operatorname{nis} \|_{i} q \rangle$

• parallel momentum \rightarrow sideband force balance o $(p = [p_{\parallel} + 2p_{\perp}]/3$ and $\delta p = p_{\parallel} - p_{\perp}$ with $p = p_i + p_e)$

$$\left< iW \right> \frac{6}{x6} \frac{a\omega}{2} - \approx \left< \theta^2 \operatorname{nis}_i W \right> \frac{6}{x6} a\omega = \left< \theta \cos \| u \right>$$

$$(iW) \mathcal{X} \equiv \left(\frac{1}{2} i\eta + \frac{1}{2} i\eta + \frac{2}{2} i\eta + \frac{$$

• ion continuity \rightarrow sideband divergence equilibrium o ($\omega_B \sin \theta$ is geodesic curvature, W_i is ion force potential)

Basic Flow Equilibrium Statements

Pfirsch-Schlüter Currents

• flow equilibrium in both species, eventually the vorticity, $=(n_e - n_i)$

$$\left<^{i}_{M}\right>\frac{x \varrho}{\varrho}\frac{z}{2}-=\left<\theta \sin \left\|u\right>$$

$$\left< {}^{\scriptscriptstyle 9}\!W \right> \frac{\delta}{x6} \frac{a\omega}{2} - = \left< \theta \cos \| v \right>$$

• hence the current $J_{\parallel} = \|U_{\parallel} - v_{\parallel}\|$

$$\langle J_{\parallel} \cos \theta \rangle = -\frac{2}{\omega_{B}} \frac{\partial x}{\partial t} \langle p \rangle + (FLR)$$

neither flow nor MHD equilibrium is assumed by GEM equations $Rp_s \sim \omega_* \ll c_s/qR$

Initial Time Traces — L-Mode Base Case

- global Alfvén oscillation
- stable transient relaxing to muindiliups (tnerrent) equilibrium
- necessary ingredient of any
 electromagnetic computation

Rasic Edge/SOL Situation

• profiles, equilibrium ExB shear layer, radial edge/SOL mode structure transition

- shear layer: neoclassical balances in edge, Debye sheath coupling in SOL
- turbulence: ITG (see \widetilde{T}_i) in edge, interchange (see ϕ) in SOL
- $_{s}\mathrm{q01}$ tuods : noitizns r
t $\mathrm{JOS}/\mathrm{sgb9}$ \bullet
- more detail: poster

(T Ribeiro et al, Plasma Phys Contr Fusion 2005)

Global Bursts in the Self Consistent Equilibrium

• ion heat flux time traces, fixed source on inner (radial) boundary

- total run length $8000L_{\perp}/c_s$ (gyro-Bohm times) or about 4 msec
- \bullet bursty turbulence for moderate drive levels, global bursts for stronger ones
- many full cycles, compare to saturation time $ca. 200L_{\perp}/c_s$

Turbulence Spectra

0.6 = 0.8 rot strud ladolg (thgir) gnirub bns (thel) neewood \bullet

- n, t, i, p, w are \widetilde{n}_{e} , \widetilde{T}_{i} , \widetilde{n}_{e} , and vorticity $\widetilde{\Omega}$, extending to ion gyroradius
- spectra (especially Ω) flatter in bursts, reflects basic nonlinearity
- no signature of "new mode" (would affect relative amplitudes)

Turbulence Parallel Envelopes

• $0.E = {}_{0}S$ rot stand ladolg (thgir) gnirub bus (the for $S_{0} = 3.0$

- n, t, i, p, H are \widetilde{n}_{e} , \widetilde{T}_{e} , \widetilde{T}_{i} , \widetilde{n}_{e} and nonadiabaticity \widetilde{h}_{e}
- ITG signature: T_i largest, most strongly ballooned \circ shear Alfvén signature: flat ϕ curve
- no signature of "new mode" (only stronger nonadiabaticity)

Sideband Divergence and Potential Profiles

• between (top) and during (mottod) gains but for $S_0 = 3.0$

Sideband Divergence and Potential Profiles

(bottom) bursts: collapse of equilibrium, large divergence, no shear layer
 (bottom) bursts: collapse of equilibrium, large divergence, no shear layer

tris is the main cause of the global burst

quiescent structure

- between bursts
 (full flx sfc case, 1024 y-nodes)
 (equiv 3600 poloidal nodes)
- profile/turbulence mostly
 profile/turbulence mostly
- weak fingers onto SOL

• remember this is still strong EM-ITG turbulence

%ç ~ $^{\circ}d/$ $\overset{\circ}{\sim}d$

 $0.166 = \Delta$

burst structure

- global bursts reach across SOL
- (1)O əbutilqms "noitsut
ənfi" \bullet
- Alfvén dynamics (φ) carry
 burst to high-field side
 (burst still more strongly
 ballooned than is apparent)

• remember all this is is stronger EM-ITG turbulence

IBM Blowout Case

• standard case: AUG #17151 H-mode deuterium

(L Horton etal, Nucl Fusion 2005)

 $V_{9.00} = 3.5 \times 10^{13} \text{ cm}^{-3} \text{ T}_{\circ} = 300 \text{ eV} \times 3.5 \text{ cm}^{-3} \text{ m}_{\circ}$

$$\vec{c} = p$$
 mo $\vec{c} = \perp \Delta$ mo \vec{c} $\vec{d} = \vec{A}$ T $\vec{c} = \vec{A}$

- mid-pedestal values for parameters, pedestal width is $3 \text{ cm} = 24 \rho_s$
- set x-domain width $L_x = L_{\perp} = 3\,\mathrm{cm}$ and use entire flux surface
- $\bullet~100$ 01-6ə
bom labiorot rası abom rasırı ini
sm $\bullet~10$
- violent overshoot, cascade, crash
- at no point is there more than a linear instability
 (then segue into remnant turbulence)

Equilibrium Structure

- neoclassical structure: dense on top, hot on bottom
- instability rocketing up,

 $(\theta' \mathcal{L})^{\circ} \mathcal{U}$

Blowout

- $20 \ \mu sec$ after previous frame
- profile blown away
- finger structure obvious (and trivial)

 $(\theta, \gamma)_{s} \pi$

Blowout Time Traces

 $c^st/\Gamma^{ op}$ 500

100

0

S.0-

 growth rate as per flux, linear then segue into turbulent aftermath

Blowout Spectra

 \bullet linear growth (left) and peak-flux (right) phases

- (tsegraf , T/ϕ_{2} : CHM) 01 bus 0 = 0 and so more than the second second
- $\bullet\,$ peak-flux: vorticity already flat to ion gyroradius scale

erash phase is outside not only MHD but also Braginskii regime

stnio9 nisM

- Basic Nature of edge turbulence: electromagnetic ion grad-T o basic scaling incompatible with H-Mode (no local explanation is tenable)
- Zonal Flow Energetics: influence of geodesic curvature
 energy transfer mechanism, not "GAMs"
- muirdiliup
ə GE snoitsdrutrə
G bləi'i əibogr
H $\,$ \bullet
- Self Consistent Equilibrium: flows, heat fluxes, currents, MHD structure
 global Alfvén oscillation, time dependent Shafranov shift as profiles evolve
- Bursty Turbulence (basic) and then Global Bursts (equilibrium breakdown)
- IBM Blowout: perhaps not as good an ELM model as the bursts themselves o basic MHD instability, but lacking pre-state, and H-Mode is not that quiescent
- Development: nonlocal gyrofluid (GEMX) and gyrokinetic (FEFI) codes
 GEMX: basic turbulence plus equilibrium OK, including Alfvén oscillation
- FEFI: still trouble with Alfvén oscillation, investigating symplectic methods