



### **Overview of the FTU results OV/3-4**

V. Pericoli Ridolfini, on behalf of FTU team and <sup>1</sup>ECH team

A. Alekseyev<sup>2</sup>, B. Angelini, S.V. Annibaldi, M.L. Apicella, G. Apruzzese, E. Barbato, J. Berrino<sup>1</sup>, A. Bertocchi, W. Bin<sup>1</sup>, F. Bombarda, G. Bracco, A. Bruschi<sup>1</sup>, P. Buratti, G. Calabrò, A. Cardinali, L. Carraro<sup>3</sup>, C. Castaldo, C. Centioli, R. Cesario, S. Cirant<sup>1</sup>, V. Cocilovo, F. Crisanti, G. D'Antona<sup>4</sup>, R. De Angelis, M. De Benedetti, F. De Marco, B. Esposito, D. Frigione, L. Gabellieri, F. Gandini<sup>1</sup>, E. Giovannozzi, G. Granucci, F. Gravanti, G. Grossetti<sup>1</sup>, G. Grosso<sup>1</sup>, F. Iannone, H. Kroegler, V. Lazarev<sup>2</sup>, E. Lazzaro<sup>1</sup>, M. Leigheb, L. Lubyako<sup>5</sup>, G. Maddaluno, M. Marinucci, D. Marocco, J.R. Martin-Solis<sup>6</sup>, G. Mazzitelli, C. Mazzotta, V. Mellera<sup>1</sup>, F. Mirizzi, G. Monari, A. Moro<sup>1</sup>, V. Muzzini<sup>1</sup>, S. Nowak<sup>1</sup>, F. Orsitto, L. Panaccione, M. Panella, L. Pieroni, S. Podda, M. E. Puiatti<sup>3</sup>, G. Ravera, G. Regnoli, F. Romanelli, M. Romanelli, A. Shalashov<sup>5</sup>, A. Simonetto<sup>1</sup>, P. Smeulders, C. Sozzi<sup>1</sup>, E. Sternini, U. Tartari<sup>1</sup>, B. Tilia, A.A. Tuccillo, O. Tudisco, M. Valisa<sup>3</sup>, A. Vertkov<sup>7</sup>, V. Vitale, G. Vlad, R. Zagórski<sup>8</sup>, F. Zonca

<sup>1</sup>Associazione EURATOM-ENEA, IFP-CNR, Via R. Cozzi, 53 - 20125 Milano, Italy

<sup>2</sup> TRINITI, Troitsk, Moscow reg., Russia

<sup>3</sup> Consozio RFX, Corso Stati Uniti 4, I-35100, Padova, Italy

<sup>4</sup> Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milano, Italy

<sup>5</sup> Institute of Applied Physics, Russian Academy of Science, Nizhny Novgorod, Russia

<sup>6</sup> Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Madrid, Spain

<sup>7</sup> FSUE, RED STAR, Moscow, Russia

<sup>8</sup> Institute of Plasma Physics and Laser Microfusion, EURATOM Association, 01-497, Warsaw, Poland

Overview FTU V. Pericoli Ridolfini

21st FEC, Chengdu - China 16-21 October 2006





### THE FTU DEVICE

Liquid Lithium Limiter (if inserted)



Overview FTU V. Pericoli Ridolfini

Compact all metallic device (circular) R=0.93 m, a=0.3 m $B_T \leq 8 \text{ T}, I_p \leq 1.6 \text{ MA}$ 

# ONLY RF HEATING LHCD $P \le 2$ MW f=8 GHz ECH $P \le 1.5$ MW f=140 GHz IBW $P \le 0.5$ MW f=433 MHz

ENE

IFP

Aims: develop ITER-relevant (in particular magnetic field and density)
Advanced Tokamak scenarios
Techniques
Physics issues





# OUTLINE

- Progress in the physics of advanced scenarios
- ≻ Results with the Liquid Lithium Limiter (LLL)
- > Active control of the MHD instabilities with the EC power
- ➢ Progress in disruption mitigation with ECH
- ≻ Flash on the theoretical activity (e<sup>-</sup>-fishbones dynamics)
- Test of the Collective Thomson Scattering (CTS) diagnostics in ITER-like configuration
- ≻ Flash on the physics study on LHCD
- ➢ Conclusions





# **FTU Internal Transport Barriers - review** *ITER relevant for:*

- → High density ( $n_{e0}$ >1.3·10<sup>20</sup> m<sup>-3</sup>), magnetic field ( $B_{T0}$ ≥5.3 T)
- Electron heating + CD only no momentum input
- Collisional ion heating

### Main achievements

- Steadiness (full CD) as long as the LHCD+ECH pulse  $(I_{bs}/I_p > 30\%)$
- → High confinement  $(1.6 \cdot \tau_{\text{ITER97-L}} \text{ at the highest } n_{e0})$
- ➤ Control of size  $(0.2 \le r_{ITB}/a \le 0.65$  through control of  $r_{LHCD}$ )
- Improved ion transport
- Solution Good density peaking without Ware pinch  $(n_{e0}/\langle n_e \rangle \geq 1.7)$

q(r) profiles close to hybrid regimes ( $q_0 \sim 1.5$ ,  $q_{min} \sim 1.2$ -1.3) Initial full relaxed  $j_{OH}(r)$  (ITB recovery possible)

Overview FTU V. Pericoli Ridolfini

Associazione EURATOM ENEA sulla Fusione

**ITB physics - steady control of the radius** 



 $0.2 \leq r_{\rm ITB}/a \leq 0.65$ 

ENER

Main control parameter = q<sub>a</sub> (acts on r<sub>dep,LH</sub>)

Important also

- OH and ECCD central counter CD
- off-axis ECH but much power required

Overview FTU V. Pericoli Ridolfini

### **ITB physics - confinement and ion transport**



Global confinement  $\tau_E > 1.6 \cdot \tau_{\text{ITER97-L}}$   $(n_{e0} \ge 1.3 \cdot 10^{20} \text{ m}^{-3})$ Ion transport improves just for r<r\_{\text{ITB}}

ENE

 $\chi_{i,ITB} \leq \chi_{i,OH}$ 

NO MOMENTUM INJECTION!

but  $T_{i0} \leq 1.6 \ keV$ 





### The LLL (Liquid Lithium Limiter) - motivations

**Longer term**: assessments for a liquid as plasma facing component (Solution of the divertor target erosion?)

<u>Shorter term</u>: studying in a medium size high field tokamak (collaboration with TRINITI and RED STAR - Russia) wall conditioning (lithization) effects on plasma discharges (Z<sub>eff</sub>, recycling, density limit, P<sub>rad</sub>, etc) heat loads and damage of LLL the modified physics in the edge plasma

Lay-out and more details on the poster EX/P4-16 by **G. Mazzitelli** and poster EX/P4-17 by **S.V. Mirnov** - Thursday19 Oct. morning

Overview FTU V. Pericoli Ridolfini







### LLL - effects of the lithized walls



Same  $Q_{inp,SOL}$  yet quite high  $\Delta T_e$ reproduced by TECXY only if: i) Recycling $\rightarrow 0$  (R=0.02) ii) a small Mo content is retained





### LLL - new high-density regimes









# 1) the island and the ECH deposition radii are localized

Overview FTU V. Pericoli Ridolfini



EN

2) a real time algorithm switches on the gyrotron with the minimum  $|r_{dep,ECH}-r_{island}|$ 





### **Disruption mitigation by ECH** P<sub>ECH</sub> acts on the MHD mode growth rate



ITALIA



### **Disruption Mitigation by ECH on FTU with Lithized Wall (October 2006)**





### **Theory ⇔ FTU experiment (e<sup>-</sup> fishbones)**



<u>*FTU e- fishbones*</u>: LH power alone in low  $n_e$  and ~full CD

ENE

#### similar MHD by fusion $\alpha$ 's

-  $\alpha$ 's have small dimensionless orbits like fast e<sup>-</sup>

- dynamics: no dependence on mass (only on energy)

simple yet relevant nonlinear dynamic model: talk TH/3-2 by *F. Zonca* (*Thursday 19 Oct. Afternoon*)

Overview FTU V. Pericoli Ridolfini





**Collective Thomson Scattering (CTS) tests** 

 $f_{gyr}$ =140 GHz <  $f_{EC}$ =198 GHz - Same ITER configuration



Any back reflection to the source to be avoided

New design antennas good perspectives

Nucl. Fusion V. 45, p. 928 (2006) U. Tartari

21st FEC, Chengdu - China 16-21 October 2006



### LH physics: LH waves - edge interaction



Overview FTU V. Pericoli Ridolfini

21st FEC, Chengdu - China 16-21 October 2006





### **Conclusions - I**

**Steady ITBs** 

>Steady, high n<sub>e</sub> ITBs (t>35 $\tau_E$ , 1.5 $\approx \tau_{R/L}$ ) with e<sup>-</sup> heating and CD only

- **≻ITB radii within 0.2≤**r<sub>ITB</sub>/a<0.65 by acting on the r<sub>dep,LH</sub>
- $\succ \tau_E \ge 1.6 \cdot \tau_{ITER97-L}$ ; ion transport inside ITBs improves

**>** Density peaking in the absence of Ware pinch at high n<sub>e</sub>

Liquid Lithium limiter (LLL)

- First successful test on a medium size tokamak
- Irop of the recycling, large D-pumping action
- SOL physics accounted for
- > New high density(=n<sub>GW</sub>) strongly peaked regimes accessed

**MHD** control

island suppressed by local ECH with a prompt (on line) digital signal processing for  $r_{island}$  and  $r_{dep,ECH}$ 





# **Conclusions - II**

*Disruptions* Avoidance attained with the right choice of a precursor + localized ECH to act on the MHD island growth rate

*Theory* Understood the non-linear dynamics of the e<sup>-</sup> fishbones

*ITER-like Collective Thomson Scattering* Careful tests have singled out the most significant obstacles to be removed - good perspectives

### LHCD physics

**Progress in modeling the interaction LH waves - turbulent edge + LH absorption**