

Overview of Alcator C-Mod Research Program

S. Scott for the C-Mod team 21st IAEA Fusion Energy Conference Chengdu, China 16-21 October, 2006

Fusion Energy Division

OAK RIDGE NATIONAL LABORATORY Managed by UT-Battelle for the Decentment of Energy

Work supported by US DoE Office of Fusion Energy Sciences

Explore a range of physics issues of interest to ITER in ITER-like regimes

- Magnetic field
- Plasma density and pressure
- Equilibrated ions / electrons
- High-Z PFCs
- Power density in SOL
- Divertor opacity to neutrals and radiation
- Momentum input and fueling decoupled from heating and current drive

Topics

- Peformance with all-metal walls and physics of 'boronization'
- Initial results with Lower Hybrid Current Drive
- MHD studies: disruption mitigation, locked modes
- Alfven Cascades
- Turbulence measurements & simulations (TEM)
- Scaling of 'intrinsic' toroidal rotation
- The plasma edge: SOL transport, 'blob' dynamics, ELMs

Extensive Campaign to Characterize Performance with All-metal walls and Effect of Boronization

Motivation:

- ITER τ_E projections are based mostly on confinement expts with low-Z PFCs or low-Z wall coatings (Li, Be, B).
- W chosen for ITER based on hydrogen retention, neutron damage, etc. despite low allowable concentration (~10⁻⁴).

C-Mod (< 2005) Mo walls, overnight boronization since 1996; BN tiles in 2000

CY 2005-06 campaign

- Removed boron from PFCs (~10% left).
- Removed BN tiles
- Extended campaign with all-metal PFCs.
- Then compare to overnight or betweenshot boronization.

<u>Result</u>: consistently higher performance with boron: Lower P_{rad}, lower n_{Mo}, higher W_{tot}. Record tokamak $\langle p \rangle$ = 1.8 atm at β_n = 1.74.

Marmar, EX/3-4

Performance with all-metal (Mo) PFCs is limited by radiation from molybdenum impurity

- H-modes readily achieved with all-metal PFCs, but P_{rad} is high and H_{89p} < 1.3.
- Overnight boronization (200 nm) reduces n_{Mo} > 5x.
- Lower n_{Mo} reduces P_{rad} ⇒ increases power flow through SOL ⇒ pedestal pressure increases.
- Profile 'stiffness' propagates increased P_{ped} to improved global $\tau_{\text{E}}.$
- Favorable effects wear off in 20-50 shots, or ~50 MJ deposited RF energy.
- Enhanced sheath potential by ICRF at specific locations is identified as cause of boron erosion and impurity generation.

Significant D retention is observed with all-metal PFCs

Similar retention rates observed with allmetal versus boronized PFCs: 20-40% of fuelled gas, $\sim 0.5\%$ of incident ion flux.

 DIONISOS facility will expose Mo target to high-flux, low-energy D plasma to study retention & saturation.

shot #

10

10

Objective: inform decision on LHCD for ITER & enhance prospects for ITER's hybrid and steady-state operations.

- measure LH coupling, current-drive efficiency, control of j(r).
- benchmark LH codes (GENRAY/CQL3D) used to model proposed AT regimes for ITER.
- LH wave physics similar on C-Mod and ITER (ω_{pe}, ω_{ce}).

Accome modeling of LHCD indicates fully steady-state, high-performance regimes are accessible

Initial LHCD results are promising: $V_{loop} \sim 0V$ at $I_p = 1.0$ MA for ~ 200 ms at $I_p = 1.0$ MA

 $P_{LH} = 800 \text{ kW}, 60^{\circ} \text{ phasing}, n_{\parallel} = 1.6, \tau_{CR} \approx 100 \text{ ms}$

- Reflection coefficients agree with Brambilla code assuming ~ 1 mm vacuum gap.
- No evidence of anomalous impurity influx.
- Sawteeth stabilized.
- Measurements of x-ray spectra and emissivity profile agree qualitatively with expectations.

LH current drive efficiency determined from power scaling is favorable

Loop voltage reduction versus normalized P_{LH}

- All shots with 60° phasing, $n_{\parallel} = 1.6$.
- P_{LH} = 120 830 kW.
- Efficiency: $\overline{n}_{20} \text{ IR/P}_{LH} \approx 0.26$
- Efficiency consistent with Genray-CQL3D modelling and ~30% above Accome.
 - \Rightarrow promising for future AT studies.

Disruption mitigation via gas jet injection shows promise for ITER even at high plasma pressure

- Technique (DIII-D): inject massive amount impurity gas to radiate W_{tot} isotropically during disruption. $P_{rad} \sim 1$ GW needed in C-Mod.
- Extend mitigation to ITER-like plasma pressure (these expts $\langle p \rangle$ = 0.8 atm, ITER = 1.75).

 Gas mixture (90% He, 10% Ar) obtains favorable radiative properties of high-Z with rapid transit of helium through gas delivery system.

Granetz, EX/4-3

NIMROD MHD simulations show edge cooling triggers 1/1, 2/1 tearing modes, leading to stochasticity

- In both DIII-D and C-Mod, high-speed imaging of gas jet plumes shows that impurity neutrals do not penetrate past plasma edge.
- Nevertheless, energy throughout plasma is radiated in 1-2 ms. How?
- NIMROD: growth of 1/1, 2/1 ⇒ stochastic field lines ⇒ core energy transported to edge ⇒ radiated by impurities.
- Favorable for ITER: direct penetration of neutral gas is not necessary.

• Scaling of \tilde{B} / B_T locking threshold is needed to extrapolate to ITER.

 α_n = 1 (experiment)

 $\alpha_{\mathsf{R}} = 2\alpha_{\mathsf{n}} + 1.25 \ \alpha_{\mathsf{B}}$ (Connor-Taylor)

- C-Mod expt: B_T scan with $n \propto I_p \propto B_T$, n/n_G = 0.17, q₉₅ =3.5, $\tilde{B}_{11}/\tilde{B}_{21}$ = 1.4.
- C-Mod data implies $\alpha_R = 0.68 \pm 0.19$ and projects to $\tilde{B}_{21}/B = 0.9 \times 10^{-4}$ at ITER's ohmic density (within ITER design constraint).

Parameterization of locking threshold:

• Scaling of \tilde{B} / B_T locking threshold is needed to extrapolate to ITER.

 α_n = 1 (experiment)

 $\alpha_{\mathsf{R}} = 2\alpha_{\mathsf{n}} + 1.25 \ \alpha_{\mathsf{B}}$ (Connor-Taylor)

- C-Mod expt: B_T scan with $n \propto I_p \propto B_T$, n/n_G = 0.17, q₉₅ =3.5, $\tilde{B}_{11}/\tilde{B}_{21}$ = 1.4.
- C-Mod data implies $\alpha_R = 0.68 \pm 0.19$ and projects to $\tilde{B}_{21}/B = 0.9 \times 10^{-4}$ at ITER's ohmic density (within ITER design constraint).
- JET/C-Mod identity experiments: JET shape, $\tilde{B}_{11}/\tilde{B}_{21}$ = 2.1. Confirms Connor-Taylor & α_n = 1.

Parameterization of locking threshold:

• Scaling of \tilde{B} / B_T locking threshold is needed to extrapolate to ITER.

 α_n = 1 (experiment)

 $\alpha_{\mathsf{R}} = 2\alpha_{\mathsf{n}} + 1.25 \alpha_{\mathsf{B}}$ (Connor-Taylor)

- C-Mod expt: B_T scan with $n \propto I_p \propto B_T$, n/n_G = 0.17, q₉₅ =3.5, $\tilde{B}_{11}/\tilde{B}_{21}$ = 1.4.
- C-Mod data implies $\alpha_R = 0.68 \pm 0.19$ and projects to $\tilde{B}_{21}/B = 0.9 \times 10^{-4}$ at ITER's ohmic density (within ITER design constraint).
- JET/C-Mod identity experiments: JET shape, $\tilde{B}_{11}/\tilde{B}_{21}$ = 2.1. Confirms Connor-Taylor & α_n = 1.
- Caveat: Lower-field (4 Tesla) C-Mod locking threshold using the JET shape might imply a less favorable R scaling to ITER.

Scaling of intrinsic plasma rotation in H-mode from multiple tokamaks provides guidance for V $_{\phi}$ in ITER

• No apparent correlation of V_{\varphi} or M with ν^* or ρ^* .

• Inferred scaling with β_N projects to $M_i = 0.3$ or $M_A = 0.02$ for ITER at $\beta_N=2.6$, $V_{\phi}=250$ km/sec, probably sufficient to stabilize RWMs.

- On-axis heating increases T_e ⇒ drives strong TEM in ITB. TEM limits electron density gradient and explains control of ITB with on-axis ICRH.
- Nonlinear GS2 gyrokinetic simulations with new synthetic PCI diagnostic reproduce:
 - wavenumber spectrum with on-axis ICRH.
 - increase in density fluctuation level with on-axis ICRH.

Ernst, TH/1-3

Nova-K with synthetic PCI diagnostic improves understanding of Alfven cascades

Phase Contrast Imaging (PCI) observes 'chirping' with multiple modes

Alfven cascades produced by early ICRF when q(r) reversed, $q_{min} = 2$.

Nova-K with synthetic PCI diagnostic improves understanding of Alfven cascades

Chirping behavior is sensitive to q(r,t). Agreement with Nova-K indicates plasmas have RS.

- Caused by multiple peaks in the actual radial mode structure, on artifact arising from integration along PCI sightlines?
- Synthetic PCI 'diagnostic' in NOVA-K indicates that multiple peaks consistent with a single radial mode.

Transport scaling near the separatrix is consistent with electromagnetic fluid drift 3-D Turbulence

• Theory: Turbulence & transport is controlled by two dimensionless parameters Beta Gradient: $\alpha_{MHD} \propto q^2 R \frac{\nabla P}{B^2}$ (inverse) Collisionality: $\alpha_d \propto \frac{1}{q} \left(\frac{\lambda_{ei}}{R}\right)^{1/2} \left(\frac{R}{L_n}\right)^{1/4}$ ator

Mod

- Experiment: $\nabla P_e \propto l_p^2$ applies in both USN and LSN, but LSN achieves higher ∇P_e and higher α_{MHD} . Observed $\nabla P_e \propto l_p^2$ scaling consistent with EMFDT.
- Plasma flows are different in USN vs LSN, suggesting flows affect accessible values of $\alpha_{MHD}.$

Intermittent turbulent structures ('blobs') at the edge have been measured with high temporal, 1-D and 2-D resolution

- SOL turbulence affects plasma-wall interaction, sets boundary condition for core plasma.
- Phenomonolgy important to guide & challenge first-principle models of intermittent transport in SOL.

Grulke, EX/P4-7

Intermittent turbulent structures ('blobs') at the edge have been measured with high temporal, 1-D and 2-D resolution

- SOL turbulence affects plasma-wall interaction, sets boundary condition for core plasma.
- Phenomonolgy important to guide & challenge first-principle models of intermittent transport in SOL.

Gas-puff imaging also used to study ELM dynamics at high resolution

- High triangularity, low v^* (<1) H-modes produce discrete ELMs with $\Delta W_{ped}/W_{ped}$ = 10-20% per ELM.
- ELM precursor: 200-400 kHz, n_{toroidal} ~10 inside separatrix, propagates in ctr-I_p dir'n.

Gas-puff imaging also used to study ELM dynamics at high resolution

- High triangularity, low v^* (<1) H-modes produce discrete ELMs with $\Delta W_{ped}/W_{ped} = 10-20\%$ per ELM.
- ELM precursor: 200-400 kHz, n_{toroidal} ~10 inside separatrix, propagates in ctr-I_p dir'n.
- Followed by ejection of rapidly propagating 'primary' filaments (V_R = 0.5 - 8.0 km/s), radial size 0.5 - 1.0 cm, at time of pedestal crash.
- 'Pedestal' on inboard and outboard sides is perturbed before ejection of filaments.
- 'Primary' is followed by multiple, slower secondary filament ejections.

C-Mod Facility Upgrades 2006-8

toroidal cryopump

tungsten belt lower divertor

- Toroidal cryopump \rightarrow density control in AT
- Tungsten belt in divertor \rightarrow long pulse, high power
- 2nd LH launcher \rightarrow 4 MW (source), compound spectra
- 2nd 4-Strap RF antenna → make room for LH
- Fast ferrite RF tuners
- Rotate DNB 7°

- \rightarrow 1 ms response, tune thru ELMs
 - \rightarrow resolve MSE calibration issues

W lamellae tiles

• Results favorable for ITER

- disruption mitigation
- LHCD
- scaling of locked modes
- scaling of intrinsic rotation
- Potential issues for ITER
 - plasma performance without low-Z PFCs or coatings
 - hydrogen retention in moly worry for tungsten also?
 - erosion and impurity generation by RF sheaths
- Progress in physics basis for ITER
 - plasma edge understanding: SOL transport, 'blob' dynamics, ELM dynamics
 - Role of TEM in electron transport clarified
 - Alfven Cascade radial structure