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Topics
•  Peformance with all-metal walls and physics of 'boronization'
•  Initial results with Lower Hybrid Current Drive
•  MHD studies:  disruption mitigation, locked modes
•  Alfven Cascades
•  Turbulence measurements & simulations (TEM)
•  Scaling of 'intrinsic' toroidal rotation
•  The plasma edge:  SOL transport, 'blob' dynamics, ELMs

   'blob' dynamics, ELMS

•  Facility Upgrades & future plans

Explore a range of physics issues of interest to ITER
in ITER-like regimes

   
   -  Magnetic field
   -  Plasma density and pressure
   -  Equilibrated ions / electrons
   -  High-Z PFCs  
   -  Power density in SOL
   -  Divertor opacity to neutrals and radiation
   -  Momentum input and fueling decoupled 
      from heating and current drive 
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Motivation:

C-Mod (< 2005) Mo walls, overnight
boronization since 1996; BN tiles in 2000

•  W chosen for ITER based on hydrogen
   retention, neutron damage, etc. despite
   low allowable concentration (~10-4).

•  ITER τE projections are based mostly
on confinement expts with low-Z PFCs 
or low-Z wall coatings (Li, Be, B).

CY 2005-06 campaign

•  Removed boron from PFCs (~10% left).
•  Removed BN tiles
•  Extended campaign with all-metal PFCs.

•  Then compare to overnight or between-
    shot boronization.

Extensive Campaign to Characterize Performance 
with All-metal walls and Effect of Boronization

Result:  consistently higher performance with boron:  Lower Prad, lower nMo,
             higher Wtot.  Record tokamak 〈p〉 = 1.8 atm at βn = 1.74.

Marmar, EX/3-4

boronized
all-metal PFC
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•  H-modes readily achieved with all-metal
   PFCs, but Prad is high and H89p < 1.3.

•  Overnight boronization (200 nm)
    reduces nMo > 5x.

•  Lower nMo reduces Prad ⇒ increases 
    power flow through SOL ⇒ pedestal 
    pressure increases.

•  Profile 'stiffness' propagates  increased 
   Pped to improved global τE.

•  Favorable effects wear off in 20-50 shots, 
   or ~50 MJ deposited RF energy.  

•  Enhanced sheath potential by ICRF at 
   specific locations is identified as cause of
   boron erosion and impurity generation.  

   

lower nMoly → lower Prad

profile
stiffness

Performance with all-metal (Mo) PFCs is limited by
radiation from molybdenum impurity

L-mode   H-mode

Marmar, EX/3-4, Wukitch, FT/1-6



Significant D retention is observed with all-metal PFCs

•  Deep penetration of D and absence of saturation is observed in lab studies (DIONISOS) that expose
    target to high-flux, low-energy D plasma.

•  Initial studies of fuel recovery via planned disruptions are promising for ITER.
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Significant D retention is observed with all-metal PFCs

•  Deep penetration of D and absence of saturation is observed in lab studies (DIONISOS) that expose
    target to high-flux, low-energy D plasma.

•  Initial studies of fuel recovery via planned disruptions are promising for ITER.
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Retention in C-mod is not caused
by co-deposition with boron
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•  Similar retention rates observed with all-
    metal versus boronized PFCs: 20-40% 
    of fuelled gas, ~0.5% of incident ion flux. • DIONISOS facility will expose Mo target

   to high-flux, low-energy D plasma to 
   study retention & saturation.

Whyte, EX/P4-29 



Major goal of C-Mod program is to study LHCD and its
application to high performance integrated AT Plasmas

Objective:  inform decision on LHCD for ITER & enhance prospects for ITER's 
                  hybrid and steady-state operations.

-   measure LH coupling, current-drive efficiency, control of j(r).
-   benchmark LH codes (GENRAY/CQL3D) used to model proposed

-  LH wave physics similar on C-Mod and ITER (ωpe, ωce).

 LHCD system: 3.0 MW (source) 
 n|| = 1.5 - 4.5, 4 x 24 grill

   AT regimes for ITER.
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Initial LHCD results are promising: 
Vloop ~0 V at Ip = 1.0 MA for ~200 ms at Ip = 1.0 MA 

neo  (1019 m-3)Ip (MA)

PLH (MW) Teo (keV)

Zeff

time (sec)

Vloop (V)

time (sec)

||PLH = 800 kW, 60o phasing, n  = 1.6, τCR ≈100 ms

Reflection coefficients
agree with Brambilla code
assuming ~ 1 mm vacuum
gap.

No evidence of anomalous
impurity influx.

Sawteeth stabilized.

Measurements of x-ray
spectra and emissivity
profile agree qualitatively
with expectations.



LH current drive efficiency determined from 
power scaling is favorable
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•  All shots with 60o phasing, n|| = 1.6.

•  PLH = 120 - 830 kW.

•  Efficiency:  n20 IR/PLH ≈ 0.26 

 •  Efficiency consistent with Genray-
    CQL3D modelling and ~30% above
    Accome. 
         ⇒ promising for future AT studies.

Loop voltage reduction versus normalized PLH

.

fully non-inductive

Bonoli, IT/P1-2 

Ip > 700 kA

ne = 3.5 - 7 ×1019 m-3



Disruption mitigation via gas jet injection shows promise
for ITER even at high plasma pressure

•  Technique (DIII-D):  inject massive amount impurity gas to radiate Wtot 
    isotropically during disruption.   Prad ~1 GW needed in C-Mod. 

•  Extend mitigation to ITER-like plasma pressure (these expts 〈p〉 = 0.8 atm, ITER = 1.75).
 

•  Gas mixture (90% He, 10% Ar) obtains favorable radiative properties of high-Z
    with rapid transit of helium through gas delivery system.

Granetz, EX/4-3
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NIMROD MHD simulations show edge cooling triggers
1/1, 2/1 tearing modes, leading to stochasticity
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•  In both DIII-D and C-Mod, high-speed imaging of gas jet plumes shows that
    impurity neutrals do not penetrate past plasma edge.

•  Nevertheless, energy throughout plasma is radiated in 1-2 ms.  How?

•  NIMROD:  growth of 1/1, 2/1 ⇒ stochastic field lines ⇒ core energy
   transported  to edge ⇒ radiated by impurities.

•  Favorable for ITER:  direct penetration of neutral gas is not necessary.

Izzo, TH/P3-15

time 



•  C-Mod expt: BT scan with n ∝ Ip ∝ BT, 
   n/nG = 0.17, q95 =3.5, B11 / B21 = 1.4.

~ ~

BT

BT Scaling of Error Field for Locked Modes
Implies a Radius Scaling Favorable for ITER

•  Scaling of B / BT locking threshold is needed 
   to extrapolate to ITER.

αn = 1 (experiment)

αR = 2αn + 1.25 αB (Connor-Taylor)

•  C-Mod data implies αR = 0.68 ± 0.19 and
projects to B21/B = 0.9 × 10 -4 at ITER's ohmic
density (within ITER design constraint).
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Parameterization of locking threshold:

αB = -1.06 ± 0.15 

ITER BT



JET data
(scaled)

•  JET/C-Mod identity experiments: JET shape,
B11 / B21 = 2.1.  Confirms Connor-Taylor & αn = 1.

•  C-Mod expt: BT scan with n ∝ Ip ∝ BT, 
   n/nG = 0.17, q95 =3.5, B11 / B21 = 1.4.

~ ~

BT

BT Scaling of Error Field for Locked Modes
Implies a Radius Scaling Favorable for ITER

•  Scaling of B / BT locking threshold is needed 
   to extrapolate to ITER.

αn = 1 (experiment)

αR = 2αn + 1.25 αB (Connor-Taylor)

•  C-Mod data implies αR = 0.68 ± 0.19 and
projects to B21/B = 0.9 × 10 -4 at ITER's ohmic
density (within ITER design constraint).
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αB = -1.06 ± 0.15 
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JET data
(scaled)

•  JET/C-Mod identity experiments: JET shape,
B11 / B21 = 2.1.  Confirms Connor-Taylor & αn = 1.

•  C-Mod expt: BT scan with n ∝ Ip ∝ BT, 
   n/nG = 0.17, q95 =3.5, B11 / B21 = 1.4.

~ ~

BT

BT Scaling of Error Field for Locked Modes
Implies a Radius Scaling Favorable for ITER

•  Scaling of B / BT locking threshold is needed 
   to extrapolate to ITER.

αn = 1 (experiment)

αR = 2αn + 1.25 αB (Connor-Taylor)

•  C-Mod data implies αR = 0.68 ± 0.19 and
projects to B21/B = 0.9 × 10 -4 at ITER's ohmic
density (within ITER design constraint).
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Parameterization of locking threshold:

•  Caveat: Lower-field (4 Tesla) C-Mod locking
   threshold using the JET shape might imply a 
   less favorable R scaling to ITER. 

αB = -1.06 ± 0.15 

αB   = -1.2 JET

C-Mod
(JET shape)



Scaling of intrinsic plasma rotation in H-mode from
multiple tokamaks provides guidance for Vφ in ITER
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Vφ ∝ ∆W/Ip in individual tokamaks, 
but size scaling is evident
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Results unified in plots of Mi = Vφ/Cs 
or MA = Vφ/VA versus βN.

•  No apparent correlation of Vφ or M with ν* or ρ*.

•  Inferred scaling with βN projects to Mi = 0.3 or MA = 0.02 for ITER
   at βN=2.6, Vφ= 250 km/sec, probably sufficient to stabilize RWMs.

Rice, EX/P3-12



TEM turbulence in ITB plasmas confirmed thru comparison of GS2
gyrokinetic simulations with measured density fluctuations
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Internal transport barrier (ITB)
generated by off-axis RF heating,

controlled with on-axis RF

•  On-axis heating increases Te ⇒ drives strong TEM in 
    ITB.  TEM limits electron density gradient and explains 
    control of ITB with on-axis ICRH.  

         -  wavenumber spectrum with on-axis ICRH.
        -  increase in density fluctuation level with on-axis
          

  

Ernst, TH/1-3

Observation of TEM turbulence in tokamaks
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TEM turbulence in ITB plasmas confirmed thru comparison of GS2
gyrokinetic simulations with measured density fluctuations
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controlled with on-axis RF

•  On-axis heating increases Te ⇒ drives strong TEM in 
    ITB.  TEM limits electron density gradient and explains 
    control of ITB with on-axis ICRH.  

•  Nonlinear GS2 gyrokinetic simulations with new
    synthetic PCI diagnostic reproduce:
         
         -  wavenumber spectrum with on-axis ICRH.
        -  increase in density fluctuation level with on-axis
          

         -  wavenumber spectrum with on-axis ICRH.
        -  increase in density fluctuation level with on-axis
          

  

Ernst, TH/1-3

Observation of TEM turbulence in tokamaks
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Nova-K with synthetic PCI diagnostic improves
understanding of Alfven cascades

Multiple peaks radially observed

•  Caused by multiple peaks in the actual
    radial mode structure, on artifcat arising 
    from integration along PCI sightlines?
  

  

•  Synthetic PCI 'diagnostic' in NOVA-K 
    indicates that multiple peaks consistent
    with a single radial mode.
  
   

Alfven cascades produced by early
ICRF when q(r) reversed, qmin = 2.
  
   

Porkalab, EX/P6-16

Phase Contrast Imaging (PCI) observes 
'chirping' with multiple modes
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   reproduce measured frequencies

Chirping behavior is sensitive to
q(r,t).  Agreement with Nova-K
indicates plasmas have RS.
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Nova-K with synthetic PCI diagnostic improves
understanding of Alfven cascades

Porkalab, EX/P6-16

Alfven cascades produced by early
ICRF when q(r) reversed, qmin = 2.
  
   

Phase Contrast Imaging (PCI) observes 
'chirping' with multiple modes
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Chirping behavior is sensitive to
q(r,t).  Agreement with Nova-K
indicates plasmas have RS.
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Multiple peaks radially observed

•  Caused by multiple peaks in the actual
    radial mode structure, on artifact arising 
    from integration along PCI sightlines?
  
•  Synthetic PCI 'diagnostic' in NOVA-K 
    indicates that multiple peaks consistent
    with a single radial mode.
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1

•  Experiment: ∇Pe ∝ Ip  applies in both USN and LSN, but LSN achieves higher ∇Pe 
   and higher αMHD.  Observed ∇Pe ∝ Ip scaling consistent with EMFDT.
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C-Mod

•  Edge plasma states again align in EMFDT phase space, but in two bands. 

•  Lower null achieves higher peak values of αMHD compared to upper null.

but value depends on X-point topology
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•  Plasma flows are quite different in USN vs LSN, possibly affecting the allowable
values of αMHD.

•  Plasma flows are different in USN vs LSN, suggesting flows affect accessible
   values of αMHD.

•  Plasma flows are quite different in USN vs LSN, possibly affecting the allowable
values of αMHD.
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Turbulence & transport is controlled by two dimensionless parameters

•  Theory:  Turbulence & transport is controlled by two dimensionless parameters

Transport near the separatrix may be described in
terms of electromagnetic fluid drift 3-D Turbulence 

Transport scaling near the separatrix is consistent
with electromagnetic fluid drift 3-D Turbulence 

(inverse) Collisionality:Beta Gradient:  αMHD ∝ ∝  q2R
B2
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Pressure gradients scale as ~Ip. 2

Beta Gradient:  α MHD ∝  q2R
B2
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Intermittent turbulent structures ('blobs') at the edge have
been measured with high temporal, 1-D and 2-D resolution
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Grulke, EX/P4-7

Blobs in the SOL have a net outward radial motion
with a velocity ~1% of Cs, in qualitative agreement

with some interchange models (Garcia)

•  Phenomonolgy important to guide & challenge
   first-principle models of intermittent transport
   in SOL.

•  SOL turbulence affects plasma-wall interaction,
   sets boundary condition for core plasma.

GPI
views
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LCFS limiter
shadow

Blob flow patterns change
across SOL into limiter shadow
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Gas-puff imaging also used to study ELM dynamics
at high resolution

•  High triangularity, low ν* (<1) H-modes produce discrete ELMs with 
   ∆Wped/Wped = 10-20% per ELM.

•  ELM precursor:  200-400 kHz, ntoroidal ~10 
   inside separatrix, propagates in ctr-Ip dir'n.
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Gas-puff imaging also used to study ELM dynamics
at high resolution

•  High triangularity, low ν* (<1) H-modes produce discrete ELMs with 
   ∆Wped/Wped = 10-20% per ELM.

•  ELM precursor:  200-400 kHz, ntoroidal ~10 
   inside separatrix, propagates in ctr-Ip dir'n.

•  Followed by ejection of rapidly propagating
   'primary' filaments (VR = 0.5 - 8.0 km/s),
   radial size 0.5 - 1.0 cm, at time of pedestal 
   crash.

•  'Primary' is followed by multiple, slower
   secondary filament ejections.

•  'Pedestal' on inboard and outboard sides
    is perturbed before ejection of filaments.
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C-Mod Facility Upgrades 2006-8

W lamellae tiles

toroidal cryopump

tungsten belt lower divertor

ª

Toroidal cryopump                  density control in ATgn

Tungsten belt in divertor         long pulse, high power gn

2nd LH launcher                      4 MW (source), compound spectragn

2nd 4-Strap RF antenna          make room for LHgn

Rotate DNB 7o                         resolve MSE calibration issuesn    g

Fast ferrite RF tuners              1 ms response, tune thru ELMsn    g



Summary

•  Results favorable for ITER
      -  disruption mitigation 
      -  LHCD
      -  scaling of locked modes
      -  scaling of intrinsic rotation

•  Potential issues for ITER
      -  plasma performance without low-Z PFCs or coatings
      -  hydrogen retention in moly - worry for tungsten also?
      -  erosion and impurity generation by RF sheaths
  

   

•  Progress in physics basis for ITER
      -  plasma edge understanding: SOL transport, 'blob' dynamics, 
         ELM dynamics
      -  Role of TEM in electron transport clarified
      -  Alfven Cascade - radial structure
   

   

  




