# **Coupled ITG/TEM-ETG Gyrokinetic Simulations**

J. Candy (with R.E. Waltz) General Atomics San Diego, California, USA

Presented at the 21st IAEA Fusion Energy Conference Chengdu, China

16-21 October 2006

# **Coupled ITG/TEM-ETG Transport**

#### **Motivation and What's New**

- Is energy transport from electron-temperature-gradient (ETG) modes significant?
  - Is it a large fraction of the total  $\chi_e$ ?
  - Could it account for residual electron transport in an ITB?
  - How do we define it, since its only part of  $\chi_e$ ?
- GYRO is well-suited (scalable, efficient) to study this problem.
- This work was supported by a DOE INCITE computer-time award.
- First simulations to resolve both electron-scale and ion-scale turbuence.

Let's define  $\chi_e^{\text{ETG}}$  as that which arises from  $k_{\theta} \rho_i > 1.0$ 

# **Coupled ITG/TEM-ETG Transport**

#### Summary of main results

- The adiabatic-ion model of ETG is poorly-behaved.
  - Transport becomes **unbounded** for some parameters.
  - Using the **kinetic ion response** cures the problem.
- Ion-temperature-gradient (ITG) transport is **insensitive** to ETG.
- Increased ITG drive can reduce ETG transport.
  - Unclear how much of the effect is linear and how much is nonlinear.
- What fraction of  $\chi_e$  is  $\chi_e^{\mathrm{ETG}}$ ?
  - Only 10% to 20% in the absence of  ${f E} imes {f B}$  shear (this talk).
  - Up to 100%, as ITG/TEM is quenched by  $E \times B$  shear (Waltz).

### The ETG-ai Model

#### The minimal model of ETG, but is it sensible?

- Basis of original studies by Jenko and Dorland.
- Take **short-wavelength limit** of the ion response:

$$\frac{\delta f_i}{n_i F_M} = -\frac{z_i e \,\delta \phi(\mathbf{x}, t)}{T_i}$$

- Nearly isomorphic to usual adiabatic-electron model of ITG.
- Computationally simple ion time and space scales removed.
- The physics of zonal flows is dramatically altered.

### **Electron-ion Scale Separation**

#### Parameterized by the electron-to-ion mass ratio

• Turbulence extends from electron ( $\rho_e$ ) scales to ion ( $\rho_i$ ) scales:

$$\frac{(L_x)_i}{(L_x)_e} \sim \mu \qquad \frac{(L_y)_i}{(L_y)_e} \sim \mu$$

Characteristic times are short for electrons and long for ions:

$$\frac{\tau_i}{\tau_e} \sim \frac{a/v_e}{a/v_i} \sim \mu$$

Critical parameter is the root of the mass-ratio:

$$\mu \doteq \sqrt{\frac{m_i}{m_e}} \simeq 60$$

# **Three Ways to Treat Ion Dynamics**

1. ETG-ai = adiabatic ion model of ETG (CHEAP)

ion scales do not enter

- 2. ETG-ki = kinetic ion model of ETG (EXPENSIVE) (no ion drive)  $\rightarrow a/L_{Ti} = 0.1, a/L_{ni} = 0.1$
- 3. **ETG-ITG** = kinetic ion model of ETG (EXPENSIVE) (ion drive)  $\rightarrow a/L_{Ti} = a/L_{Te}, a/L_{ni} = a/L_{ne}$



Other parameters taken to match the **Cyclone base case**:

$$q = 1.4, s = 0.8, R/a = 2.78, a/L_{Te} = 2.5, a/L_{ne} = 0.8$$

### **Reduced Mass Ratio for Computational Efficiency**

#### A crucial method to cut corners

- Can deduce essential results using  $\mu < 60$ .
- Fully-coupled simulations, as shown, use light kinetic ions:

$$\mu \doteq \sqrt{\frac{m_i}{m_e}} = 20, 30 \ .$$

- Simulation cost scales roughly as  $\mu^{3.5}$ :  $\left(\frac{30}{20}\right)^{3.5} \simeq 4$ .
  - $\mu = 20$  5 days on Cray X1E (192 MSPs)  $\mu = 30$  5 days on Cray X1E (720 MSPs)

### **ETG-ai Model FAILS for Cyclone Base Case**

#### Lacks long-wavelength ion response of robust ETG-ki model



**Red curve (ETG-ai)** is unphysical for s > 0.4.

### **Toroidal Power Spectrum Comparison**

ETG-ki model modifies long-wavelength dynamics only



**Red curve (ETG-ai)** exhibits spectral pile-up at  $k_{\theta}\rho_e = 0$ .

## **Comparison of ETG-ki Simulations**

#### Spectral overlap is obtained between *large-box* and *small-box* simulations



**Red curve** simulation too small to contain most-unstable ITG/TEM modes.

# The Effect of Ion Gradients: ETG-ITG versus ETG-ki Finite ion gradients reduce $\chi_e^{\text{ETG}}$



### **Understanding the Effect of Ion Gradients**

#### What is the dominant physical mechanism for this reduction?



$$(I)_{k_{\theta}} = \left| \frac{e\phi_{k_{\theta}}}{T} \right|^{2}$$
$$(Q_{e})_{k_{\theta}}$$

is the intensity

 $(R_e)_{k_{\theta}} = \frac{(Q_e)_{k_{\theta}}}{k_{\theta}\rho_i(I)_{k_{\theta}}n_e T_e}$ 

is the quasilinear response function.

 $a\gamma/v_i$  is the linear growth rate.

## **Linear Effect of Ion Gradients**

#### Some correlation between linear and nonlinear results



## **Electron Temperature Profile Corrugations Develop**

#### This is a real phenomenon, tied to rational surfaces



Are corrugations connected with the reduction in  $\chi_e^{
m ETG}$ ?

# Perpendicular Spectral Intensity of Density Fluctations ETG-ITG spectrum is highly isotropic for $k_{\perp}\rho_i > 0.5$



### **Effect of Reduced Spatial Grid Size**

Resolving only up to  $k_{ heta} 
ho_i < 1.1$  approximates total electron transport



Traditional simulation (black) gives a good approximation of  $\chi_e$ .

### **Effect of Reduced Perpendicular Box Size**

A  $32\rho_i \times 32\rho_i$  box is enough to capture the physics for  $k_{\theta}\rho_e > 0.1$ .



### **Mass-ratio Comparison in Ion Units**

Transport overestimate for  $\mu=20$  is well-known



### **Mass-ratio Comparison in Electron Units**

Curve approaches universal shape at short wavelength ( $k_{\theta}\rho_e > 0.1$ )



# **Electron Transport Result Matrix**

About 16% (8%) of electron transport comes from  $k_{\theta}\rho_i > 1$  ( $k_{\theta}\rho_i > 2$ )

|                          | $\mu$ | $k_{\theta}\rho_i < 1$ | $k_{\theta}\rho_i > 1$ | $k_{\theta}\rho_i > 2$ | $k_{\theta}\rho_e > 0.1$ |
|--------------------------|-------|------------------------|------------------------|------------------------|--------------------------|
| $\chi_i/\chi_{{ m GB}i}$ | 20    | 7.378                  | 0.054                  | 0.011                  |                          |
|                          | 30    | 7.754                  | 0.043                  | 0.009                  |                          |
| $\chi_e/\chi_{{ m GB}i}$ | 20    | 2.278                  | 0.367                  | 0.183                  |                          |
|                          | 30    | 1.587                  | 0.296                  | 0.157                  |                          |
| $D/\chi_{{ m GB}i}$      | 20    | -0.81                  | 0.134                  | 0.009                  |                          |
|                          | 30    | -1.60                  | 0.074                  | 0.010                  |                          |
| $\chi_e/\chi_{ m GB}e$   | 20    |                        |                        |                        | 3.67                     |
|                          | 30    |                        |                        |                        | 3.76                     |

# **Coupled ITG/TEM-ETG Transport**

#### Summary of main results

- The adiabatic-ion model of ETG is poorly-behaved.
  - Transport becomes **unbounded** for some parameters.
  - Using the **kinetic ion response** cures the problem.
- Ion-temperature-gradient (ITG) transport is **insensitive** to ETG.
- Increased ITG drive can reduce ETG transport.
  - Unclear how much of the effect is linear and how much is nonlinear.
- What fraction of  $\chi_e$  is  $\chi_e^{\mathrm{ETG}}$ ?
  - Only 10% to 20% in the absence of  ${f E} imes {f B}$  shear (this talk).
  - Up to 100%, as ITG/TEM is quenched by  $E \times B$  shear (Waltz).

### Acknowledgments

We thank the following people for input and technical assistance

Mark Fahey, ORNL.

Bill Nevins, LLNL.

Carlos Estrada-Mila, UCSD (graduated).

Chris Holland, UCSD.

Frank Jenko, IPP-Garching.

Bill Dorland, U. Maryland.

Andris Dimits, LLNL.

# Movies

- 1. ETG-ki.mpg
- 2. ETG-ITG.mpg