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Coupled ITG/TEM-ETG Transport
Motivation and What’s New

• Is energy transport from electron-temperature-gradient (ETG) modes

significant?

– Is it a large fraction of the total χe?

– Could it account for residual electron transport in an ITB?

– How do we define it, since its only part of χe?

• GYRO is well-suited (scalable, efficient) to study this problem.

• This work was supported by a DOE INCITE computer-time award.

• First simulations to resolve both electron-scale and ion-scale turbuence.

Let’s define χETG

e as that which arises from kθρi > 1.0
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Coupled ITG/TEM-ETG Transport
Summary of main results

• The adiabatic-ion model of ETG is poorly-behaved .

– Transport becomes unbounded for some parameters.

– Using the kinetic ion response cures the problem.

• Ion-temperature-gradient (ITG) transport is insensitive to ETG.

• Increased ITG drive can reduce ETG transport.

– Unclear how much of the effect is linear and how much is nonlinear .

• What fraction of χe is χETG

e ?

– Only 10% to 20% in the absence of E×B shear (this talk).

– Up to 100%, as ITG/TEM is quenched by E×B shear (Waltz).
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The ETG-ai Model
The minimal model of ETG, but is it sensible?

• Basis of original studies by Jenko and Dorland.

• Take short-wavelength limit of the ion response:

δfi

niFM

= −
zie δφ(x, t)

Ti

.

• Nearly isomorphic to usual adiabatic-electron model of ITG.

• Computationally simple – ion time and space scales removed.

• The physics of zonal flows is dramatically altered.



5 Coupled ITG/TEM-ETG Gyrokinetic Simulations

Electron-ion Scale Separation
Parameterized by the electron-to-ion mass ratio

• Turbulence extends from electron (ρe) scales to ion (ρi) scales:

(Lx)i

(Lx)e

∼ µ
(Ly)i

(Ly)e

∼ µ

• Characteristic times are short for electrons and long for ions :

τi

τe

∼
a/ve

a/vi

∼ µ

• Critical parameter is the root of the mass-ratio :

µ
.
=

√

mi

me

≃ 60
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Three Ways to Treat Ion Dynamics

1. ETG-ai = adiabatic ion model of ETG (CHEAP)

ion scales do not enter

2. ETG-ki = kinetic ion model of ETG (EXPENSIVE)

(no ion drive) → a/LT i = 0.1, a/Lni = 0.1

3. ETG-ITG = kinetic ion model of ETG (EXPENSIVE)

(ion drive) → a/LT i = a/LTe, a/Lni = a/Lne

Other parameters taken to match the Cyclone base case :

q = 1.4, s = 0.8, R/a = 2.78, a/LTe = 2.5, a/Lne = 0.8
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Reduced Mass Ratio for Computational Efficiency
A crucial method to cut corners

• Can deduce essential results using µ < 60.

• Fully-coupled simulations, as shown, use light kinetic ions :

µ
.
=

√

mi

me

= 20, 30 .

• Simulation cost scales roughly as µ3.5:

(

30

20

)3.5

≃ 4.

µ = 20 5 days on Cray X1E (192 MSPs)

µ = 30 5 days on Cray X1E (720 MSPs)
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ETG-ai Model FAILS for Cyclone Base Case
Lacks long-wavelength ion response of robust ETG-ki model
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Red curve (ETG-ai) is unphysical for s > 0.4.
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Toroidal Power Spectrum Comparison
ETG-ki model modifies long-wavelength dynamics only
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Red curve (ETG-ai) exhibits spectral pile-up at kθρe = 0.
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Comparison of ETG-ki Simulations
Spectral overlap is obtained between large-box and small-box simulations
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The Effect of Ion Gradients: ETG-ITG versus ETG-ki
Finite ion gradients reduce χETG
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Understanding the Effect of Ion Gradients
What is the dominant physical mechanism for this reduction?
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is the intensity
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neTe

is the quasilinear response function .

aγ/vi is the linear growth rate .



13 Coupled ITG/TEM-ETG Gyrokinetic Simulations

Linear Effect of Ion Gradients
Some correlation between linear and nonlinear results
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Electron Temperature Profile Corrugations Develop
This is a real phenomenon, tied to rational surfaces
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Perpendicular Spectral Intensity of Density Fluctations
ETG-ITG spectrum is highly isotropic for k⊥ρi > 0.5
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Effect of Reduced Spatial Grid Size
Resolving only up to kθρi < 1.1 approximates total electron transport
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Effect of Reduced Perpendicular Box Size
A 32ρi × 32ρi box is enough to capture the physics for kθρe > 0.1.
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Mass-ratio Comparison in Ion Units
Transport overestimate for µ = 20 is well-known
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Mass-ratio Comparison in Electron Units
Curve approaches universal shape at short wavelength ( kθρe > 0.1)
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Electron Transport Result Matrix
About 16% (8%) of electron transport comes from kθρi > 1 (kθρi > 2)

µ kθρi < 1 kθρi > 1 kθρi > 2 kθρe > 0.1

χi/χGBi 20 7.378 0.054 0.011

30 7.754 0.043 0.009

χe/χGBi 20 2.278 0.367 0.183

30 1.587 0.296 0.157

D/χGBi 20 −0.81 0.134 0.009

30 −1.60 0.074 0.010

χe/χGBe 20 3.67

30 3.76
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Coupled ITG/TEM-ETG Transport
Summary of main results

• The adiabatic-ion model of ETG is poorly-behaved .

– Transport becomes unbounded for some parameters.

– Using the kinetic ion response cures the problem.

• Ion-temperature-gradient (ITG) transport is insensitive to ETG.

• Increased ITG drive can reduce ETG transport.

– Unclear how much of the effect is linear and how much is nonlinear .

• What fraction of χe is χETG

e ?

– Only 10% to 20% in the absence of E×B shear (this talk).

– Up to 100%, as ITG/TEM is quenched by E×B shear (Waltz).
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Movies

1. ETG-ki.mpg

2. ETG-ITG.mpg
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