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C-Mod ITB formed with off-axis ICRH,
controlled with on-axis ICRH
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» CCD-based visible
Bremsstrahlung:

» AR ~1 mm
» sampled >1 kHz

» Densities > 104t m—3

» Temperatures
T; ~ Te ~const.

» Peaking over
tens of ¢

» Off-axis heating broadens temperature, reducing ITG drive
» Ware pinch peaks density (further suppressing ITG)
» Peaking continues until density gradient clamped by TEM
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On-axis heating increases temperature,
halting density rise

» Full available source power
utilized to form and maintain ITB

» T. increases 40% with on-axis
ICRH

» Density rise halts after Te
Increase
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On-axis heating increases temperature,
halting density rise
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Previous work explored role of TEM in control
of ITB with on-axis heating

Ernst et al., IAEA-CN-116/TH/4-1 (2004)

3.0 .
i » Trajectory of ITB stagnates
- Trajectory of ITB (r=0.4 : it
25l R upon crossing TEM stability
| weak dependence 135 .1.40 boundary
' » Ware pinch balanced by
el TEM outflow
J - » Nonlinear GS2 simulations
I ITG/TEM| o
C 10] 2 match measured fluxes
o - ) » Gyro-Bohm scaling of TEM
R | 3 transport
: g 3/2
0.0 STABLE » To'° controls TEM flux
[ » Collisionality dependence
_0.8.0 — OI.5 — 1I.0l l 15 — 2.0 Saturated
allt [Phys. Plasmas (2004) 2637]
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[ » Collisionality dependence
_0.8.0 — OI.5 — 1I.0l l 15 — 2.0 Saturated
allt [Phys. Plasmas (2004) 2637]

» Limiting value of a/L, controlled by Te (on-axis ICRH)
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Strong density fluctuations observed
during on-axis heating
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Phase Contrast Imaging
(PCIl) measures
line-integrated density
fluctuations

Wavenumber kg In major
radius direction

Onset of strong turbulence in
therange 1 <kg <5cm™1

Is this TEM turbulence?
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Phase Contrast Imaging
(PCIl) measures
line-integrated density
fluctuations

Wavenumber kg In major
radius direction

Onset of strong turbulence in
therange 1 <kg <5cm™1

Is this TEM turbulence?

Begin with stability analysis
at two times shown ...
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Classical collisional diffusion
damps shorter wavelength TEMs

(e [che )] ) = Crorema(h) + (3 97) F(v2,v)/v) b

[GK Collision Operator: Catto & Tsang, Phys. Fluids (1977)]

TEM (dT/dr = 0)

o 0.20
{ VeRo/CS =1.0

S el Vij = Ve /60 » Implemented FLR terms in GS2
‘: » “FLR Krook” operator

S L1l Lorentz » Augments usual GS2 Lorentz
£ | Lorentz + FLR » Conserving terms

g 0.05 | Implemented

5 : » Damps TEM for kyp; > 2, for
000 b C-Mod collisionalities

Poloidal Wavenumber kq 0
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‘: » “FLR Krook” operator

S L1l Lorentz » Augments usual GS2 Lorentz
£ | Lorentz + FLR » Conserving terms

g 0.05 | Implemented

5 : » Damps TEM for kyp; > 2, for
000 b C-Mod collisionalities

Poloidal Wavenumber kq 0

» TEMSs extended along field lines, with higher kg = nq/r:
k3 =ki(1+ 8*(0 — 0p)*) damps tails of eigenfunction ¢(6)
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Classical collisional diffusion
damps shorter wavelength TEMs

(e [che )] ) = Crorema(h) + (3 97) F(v2,v)/v) b

[GK Collision Operator: Catto & Tsang, Phys. Fluids (1977)]

TEM (dT/dr = 0)

o 0.20
Q VeR()/CS =1.0

S el Vij = Ve /60 » Implemented FLR terms in GS2
‘: » “FLR Krook” operator

S L1l Lorentz » Augments usual GS2 Lorentz
£ | Lorentz + FLR » Conserving terms

g 0.05 | Implemented

5 : » Damps TEM for kyp; > 2, for
3000 b D C-Mod collisionalities

Poloidal Wavenumber kq 0

» TEMSs extended along field lines, with higher kg = nq/r:
k3 =ki(1+ 8*(0 — 0p)*) damps tails of eigenfunction ¢(6)
» Classical diffusion included in stability calculations to follow
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On-axis heating increases temperature,
destabilizing TEM inside ITB foot
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Phase Contrast Imaging
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Filtering the edge Quasi-Coherent Mode

Log(autopower) [A.U.] 1.22s > QC mode regulates EDA
H-Mode pedestal gradients
250 » QC <20% contribution to
= 200 total fluctuation power (this
I
~, case)
P l
2 150] » Wavenumber spectrum
= | Insensitive to
r 100 » lower and upper frequency

cutoffs
» QC mode contribution

501

| I—5I T 0 o 5 II
Wavenumber kg [cm ™Y
QC Mode on PCI:

A. Mazurenko et al., Phys. Rev. Lett. 89 (2002) 225004.
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Filtering the edge Quasi-Coherent Mode

Log(autopower) [A.U.] 1.22s > QC mode regulates EDA
H-Mode pedestal gradients

» QC <20% contribution to
total fluctuation power (this
case)

» Wavenumber spectrum
Insensitive to

Frequency [kHZz]
|_\
o1
o

100 » lower and upper frequency
; cutoffs
>l , B » QC mode contribution
B e — » Remove QC mode from
Wavenumber kg [cm ™} spectrum - eliminate
QC Mode on PC amplitude increase with
A. Mazurenko et al., Phys. Rev. Lett. 89 (2002) 225004. heating power
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Nonlinear GS2 simulations reproduce relative
Increase In density fluctuation level
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Synthetic PCI Diagnhostic for GS2

e Figure above from
pC\ Y M. A. Beer, PhD Thesis,
Princeton University (1995).

B=Vax Vy 10

a=C—q(y)d

Va Vo
Vy

Non-orthogonal

10

10

aperture, reference beam at kg ~ 0
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Integration over parts of
flux tube viewed by PCI

PCI beam

Region of flux i
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in GS2 integral | 1

-
~= -
-

0
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(Poloidal Projection)

» Transform kg = (VR - V¢/|V¥|)ky + (VR - Va/|Va|)k,
» Integrate along GS2 flux tube over poloidal angles covered by PCI.
» Apply instrument function to account for Gaussian beam, finite
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Nonlinear gyrokinetic simulations reproduce
measured wavelength spectrum of TEM density
fluctuations in the ITB
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Wavenumber kg [cm~]

>

GS2 with new synthetic PCI
diagnostic

Shape of kg spectrum
reproduced

Wavelength of peak in very
close agreement

» Linear combination of
poloidal and radial spectra

» Radial spectrum provides
necessary 1 cm—1!
downshift

» GS2 spectrum slightly
more broad than PCI

Observation of TEM turbulence
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Nonlinear Upshift of TEM Ciritical Density
Gradient Increases with Collisionality

» TEM upshift (phys. plasmas (2004) 26377, analogous to Dimits shift for ITG.

» Linear threshold insensitive to collisionality

» TEM strongly damped by electron-ion collisions, « (v, /cw)/?

[Connor et al.,, PPCF (2006) 885].
» Zonal flows weakly damped by ion-ion collisions
» Nonlinear TEM threshold increases with density
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Secondary instability leads to zonal flow
dominated states in the upshift regime

UPSHIFT REGIME ABOVE THRESHOLD
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10_:_ POTENTIAL drive zonal flow [Rogers, Dorland, Kotschenreuther, Phys. Rev. Lett. (2000).]
10k . . . .

160 fi/R 1o P Zonal flows are slowly damped by
S ion-ion collisions.
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Conclusions

» |ITB localizes chord integrated fluctuations, isolates TEM

» Developed new synthetic PCI diagnostic for GS2, TEM simulations
reproduce:

» Relative increase in density fluctuations with on-axis heating
» Meas. TEM wavelength spectrum, in first of kind comparison

» Basic TEM physics:

» Classical diffusion suppresses shorter wavelength TEMs
» Nonlinear upshift of TEM critical density gradient increases with
collisionality
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