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C-Mod ITB formed with off-axis ICRH,
controlled with on-axis ICRH
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I CCD-based visible
Bremsstrahlung:

I ∆R ∼1 mm
I sampled >1 kHz

I Densities > 1021 m−3

I Temperatures
Ti ' Te ∼const.

I Peaking over
tens of τE

I Off-axis heating broadens temperature, reducing ITG drive
I Ware pinch peaks density (further suppressing ITG)
I Peaking continues until density gradient clamped by TEM
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On-axis heating increases temperature,
halting density rise

I Full available source power
utilized to form and maintain ITB

I Te increases 40% with on-axis
ICRH

I Density rise halts after Te

increase
I TEM driving factor,
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Previous work explored role of TEM in control
of ITB with on-axis heating

Ernst et al., IAEA−CN−116/TH/4−1 (2004)
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I Trajectory of ITB stagnates
upon crossing TEM stability
boundary

I Ware pinch balanced by
TEM outflow

I Nonlinear GS2 simulations
match measured fluxes

I Gyro-Bohm scaling of TEM
transport

I T 3/2
e controls TEM flux

I Collisionality dependence
saturated

[Phys. Plasmas (2004) 2637]

I Limiting value of a/Ln controlled by Te (on-axis ICRH)
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Strong density fluctuations observed
during on-axis heating
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I Phase Contrast Imaging
(PCI) measures
line-integrated density
fluctuations

I Wavenumber kR in major
radius direction

I Onset of strong turbulence in
the range 1 . kR . 5 cm−1

I Is this TEM turbulence?
I Begin with stability analysis

at two times shown ...
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Classical collisional diffusion
damps shorter wavelength TEMs
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[GK Collision Operator: Catto & Tsang, Phys. Fluids (1977)]
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I Implemented FLR terms in GS2
I “FLR Krook” operator
I Augments usual GS2 Lorentz
I Conserving terms

implemented

I Damps TEM for kθρi > 2, for
C-Mod collisionalities

I TEMs extended along field lines, with higher kθ = nq/r:
k2

⊥ = k2

θ(1 + ŝ2(θ − θ0)
2) damps tails of eigenfunction φ(θ)

I Classical diffusion included in stability calculations to follow
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On-axis heating increases temperature,
destabilizing TEM inside ITB foot

I Gyrokinetic stability analysis
before/during on-axis heating

I Before on-axis heating:
I Toroidal ITG modes dominant

I During on-axis heating:
I Strong TEM for ρ < 0.4
I Density gradient driven
I Little change for ρ > 0.4

I ITB used to localize
chordal PCI measurement
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Phase Contrast Imaging

Electron density fluctuations along
32 vertical chords

Phase plate shifts scattered beam,
recombined with reference beam on detector

Alcator
C−Mod

Wave number range
0.5 cm−1< |kR| < 8.3 cm−1

Frequency Range
2 kHz ~ 5 MHz

R ) spectra(f, k

 M. Porkolab et al., IEEE Trans. in Plasma Sci. 34 (2006) 229.
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Filtering the edge Quasi-Coherent Mode
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QC Mode on PCI:

A. Mazurenko et al., Phys. Rev. Lett. 89 (2002) 225004.

I QC mode regulates EDA
H-Mode pedestal gradients

I QC <20% contribution to
total fluctuation power (this
case)

I Wavenumber spectrum
insensitive to

I lower and upper frequency
cutoffs

I QC mode contribution

I Remove QC mode from
spectrum - eliminate
amplitude increase with
heating power
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Nonlinear GS2 simulations reproduce relative
increase in density fluctuation level
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I On-axis heating drives TEM
unstable

I GS2 nonlinear simulations
before/during on-axis ICRH

I Normalized to later time
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Synthetic PCI Diagnostic for GS2

PCI beams Figure above from
M. A. Beer, PhD Thesis,

Princeton University (1995).
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I Transform kR = (∇R · ∇ψ/|∇ψ|)kψ + (∇R · ∇α/|∇α|)kα
I Integrate along GS2 flux tube over poloidal angles covered by PCI.
I Apply instrument function to account for Gaussian beam, finite

aperture, reference beam at kR ' 0
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Nonlinear gyrokinetic simulations reproduce
measured wavelength spectrum of TEM density

fluctuations in the ITB
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I GS2 with new synthetic PCI
diagnostic

I Shape of kR spectrum
reproduced

I Wavelength of peak in very
close agreement

I Linear combination of
poloidal and radial spectra

I Radial spectrum provides
necessary 1 cm−1

downshift
I GS2 spectrum slightly

more broad than PCI
I Observation of TEM turbulence
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Nonlinear Upshift of TEM Critical Density
Gradient Increases with Collisionality

I TEM upshift [Phys. Plasmas (2004) 2637], analogous to Dimits shift for ITG.
I Linear threshold insensitive to collisionality
I TEM strongly damped by electron-ion collisions, ∝ (νe/εω)1/2

[Connor et al., PPCF (2006) 885].

I Zonal flows weakly damped by ion-ion collisions
I Nonlinear TEM threshold increases with density
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Secondary instability leads to zonal flow
dominated states in the upshift regime
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Secondary instability rapidly transfers 
energy from primaries (TEM) to zonal flows.

Zonal flows are slowly damped by 
ion-ion collisions.

[Rogers, Dorland, Kotschenreuther, Phys. Rev. Lett. (2000).]
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Conclusions

I ITB localizes chord integrated fluctuations, isolates TEM

I Developed new synthetic PCI diagnostic for GS2, TEM simulations
reproduce:

I Relative increase in density fluctuations with on-axis heating
I Meas. TEM wavelength spectrum, in first of kind comparison

I Basic TEM physics:

I Classical diffusion suppresses shorter wavelength TEMs
I Nonlinear upshift of TEM critical density gradient increases with

collisionality
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