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Abstract. Models for the prediction of ion and electron pedestal temperatures at the edge of type 
I ELMy H-mode plasmas are developed. These models are based on theory motivated concepts 
for pedestal width and pressure gradient. The pedestal pressure gradient is assumed to be limited 
by high n ballooning mode instabilities, where both the first and second stability limits are 
considered. The effect of the bootstrap current, which reduces the magnetic shear in the steep 
pressure gradient region at the edge of the H-mode plasma, can result in access to the second 
stability of ballooning mode. In these pedestal models, the magnetic shear and safety factor are 
calculated at a radius that is one pedestal width away from separatrix. The predictions of these 
models are compared with pedestal data for type I ELMy H-mode discharges obtained from the 
latest public version (version 3.2) in the International Tokamak Physics Activity Edge (ITPA) 
Pedestal Database. It is found that the pedestal temperature model based on the magnetic and 
flow shear stabilization yields the best agreement with experimental data (RMSE of 28.2%). For 
standard H-mode ITER discharges with 15 MA plasma current, predictive analysis yields ion and 
electron temperatures at the top of the H-mode pedestal in the range from 1.7 to 1.9 keV.   

 
1. Introduction 

 
It is well known that when the plasma heating power increases, plasmas can undergo a 
spontaneous self-organizing transition from a low confinement mode (L-mode) to a high 
confinement mode (H-mode). This plasma activity is widely believed to be caused by the 
generation of a flow shear at the edge of plasma, which is responsible for suppressed turbulence 
and transport near the edge of plasma. The reduction of transport near the plasma edge results in 
a narrow sharply-defined region at the edge of the plasma with steep temperature and density 
gradients, called the pedestal. This pedestal is located near the last closed magnetic flux surface 
and typically extends over with a width of about 5% of the plasma minor radius. It was found that 
energy confinement in the H-mode regime of tokamaks strongly depends on the temperature and 
density at the top of the pedestal [1]. Therefore, it is important in H-mode tokamak plasma 
studies, especially for the burning plasma experiment such as the International Thermonuclear  
Experimental Reactor (ITER) [2], to have a reliable prediction for temperatures at the top of the 
pedestal.  
 
In the previous pedestal study by T. Onjun et al. [3], six theory-based pedestal temperature 
models were developed using different models for the pedestal width together with a ballooning 
mode pressure gradient limit that is restricted to the first stability of ballooning modes. These 
models also include the effects of geometry, bootstrap current, and separatrix, leading to a 
complicated nonlinear behavior. For the best model, the agreement between model’s predictions 



and experimental data for pedestal temperature is about 30.8% RMSE for 533 data points from 
the International Tokamak Physics Activity Edge (ITPA) Pedestal Database. One weakness of 
these pedestal temperature models is the assumption that the plasma pedestal is in the first 
stability regime of ballooning modes.  
 
In this study, six pedestal width models in Refs. [3-8] are modified to include the effect of the 
second stability limit of ballooning modes. The predictions from these pedestal temperature 
models are be tested against the latest public version of the pedestal data (Version 3.2) obtained 
from the ITPA Pedestal Database. This paper is organized in the following way: In Section 2, the 
pedestal temperature model development is described. In Section 3, the predictions of the 
pedestal temperature resulting from the models are compared with pedestal temperature 
experimental data. A simple statistical analysis is used to characterize the agreement of the 
predictions of each model with experimental data. The development and comparison with 
experimental data for the pedestal density models are shown in Section 4. In Section 5, 
conclusions are presented 
 
2. H-Mode Pedestal Temperature Model 
 
Each pedestal temperature model described in Ref. [1] has two parts: a model for the pedestal 
width (∆) and a model for the pressure gradient (∂p/∂r). The pedestal density, nped, is obtained 
directly from the experiment or from the pedestal density model described in Section 4. The 
temperature at the top of the pedestal (Tped) can be estimated as 
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where k is the Boltzmann constant. Six pedestal models were developed based on Eq. (1) in  
Ref. [3]. These pedestal models are based on (1) the flow shear stabilization width model 
[∆∝(ρRq)1/2] [3], (2) the magnetic and flow shear stabilization width model [∆∝ρs2] [4], (3) the 
normalized poloidal pressure width model [∆∝R(βθ,ped)1/2] [5], (4) the diamagnetic stabilization 
width model [∆∝ρ2/3R1/3] [6], (5) the ion orbit loss width model [∆∝ε1/2ρθ] [7], and (6) the two 
fluid Hall equilibrium width model [∆∝(1/Z)(AH/nped)1/2] [8]. Note that the constant of 
proportionality in the pedestal width scaling based the two fluid Hall equilibrium width model in 
Ref. [8] is varied in this work to improve agreement with experimental data. These six pedestal 
width models are used in this paper together with an improved pressure gradient model to 
develop new pedestal temperature models.   
 
For the maximum pressure gradient in the pedestal of type I ELMy H-mode discharges, the 
pedestal pressure gradient is approximated as the pressure gradient limit of high-n ballooning 
modes in the short toroidal wavelength limit. The ballooning mode is usually described using the 
magnetic shear vs. normalized pressure gradient diagram (s-α diagram). Normally, the 
calculation of ballooning mode stability is complicated, requiring information about the plasma 
equilibrium and geometry. A number of different codes have been developed for stability 
analysis, such as HELENA, MISHKA and ELITE. In Ref. [9], stability analyses for JET 
triangularity scan H-mode discharges were carried out using the HELENA and MISHKA ideal 
MHD stability codes. For the JET high triangularity discharge 53298, the stability analysis results 
are shown in fig. 10 in Ref. [9]. Based on results obtained in Ref. [9], the s-α MHD stability 



diagram with both the first and second stability effects included can be simplified as Fig. 1. This 
s-α MHD stability diagram leads to an analytic expression for the critical normalized pressure 
gradient αc that includes the effect of both the first and second stability of ballooning modes and 
geometrical effects given by: 
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where µ0 is the permeability of free space, R is the major radius, q is the safety factor, BT is the 
toroidal magnetic field, s is the magnetic shear, κ95 and δ95 are the elongation and triangularity at 
the 95% flux surface, and α0(s) is a function of magnetic shear as 
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Note that in this work, the effect of geometry on the plasma edge stability has a similar form with 
that used in Ref. [3], but somewhat stronger. The function in Eq. (3) can be understood as the 
following: for s > 6, the equation indicates that the pedestal is in the first stability regime of 
ballooning modes; for 6 ≥ s ≥ 3, the equation represents the regime of a transition from first to 
second stability of ballooning modes; for s < 3, the equation represents a plasma that is in the 
second stability of ballooning modes, where the pedestal pressure gradient is limited by finite n 
ballooning mode stability. It should be noted that the effect of the current-driven peeling mode is 
not considered in this work. In Eq. (3), the bootstrap current and separatrix effects are included 
through the calculation of magnetic shear as described in Ref. [1]. Note that the magnetic shear in 
Ref. [3] is calculated as 
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where the multiplier Cbs is adjusted to account for the uncertainty of the bootstrap current effect.  

     
Fig. 1: The normalized pressure gradient vs. magnetic shear diagram (s-α diagram) is plotted. First and 
second stability region and unstable region is also described. 
 
3. Results and Discussions 

 
Statistical comparisons between predicted pedestal parameters and corresponding experimental 
values obtained from the ITPA Pedestal Database [10] version 3.2 are carried out. To quantify the 



comparison between the predictions of each model and experimental data, the root mean-square 
error (RMSE), the offset, and the Pearson product moment correlation coefficient (R) are 
computed. The RMSE, offset, and correlation R are defined as  
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Six scalings for the pedestal temperature are derived using the six models described above for the 
width of the pedestal together with the model given by Eqs. (2) and (3) for the critical pressure 
gradient that includes both the first and second stability of ballooning modes. The pedestal 
temperature scalings are calibrated using 457 experimental data points (90 from JET experiment, 
and 367 from JT-60U experiment) for the ion pedestal temperature from the ITPA Pedestal 
Database (Version 3.2). The statistical results are shown in Table 1. The value of the coefficient, 
Cw, used in each of the expressions for the pedestal width and the value of multiplier Cbs used in 
the calculation of magnetic shear are given in the second and third column of Table 1, 
respectively.  It is found that the RMSEs for the pedestal temperature range from 28.2% to 
109.4%, where the model based on ∆∝ρs2 yields the lowest RMSE. For the offset, it is shown in 
Table 1 that the offsets range from -6.5% to 9.0%, where the model based on ∆∝ρs2 yields the 
best agreement (smallest absolute value of the offset). For the correlation R, it is shown in Table 
1 that the values of correlation R range from 0.28 to 0.80, where the model based on ∆∝ρs2 yields 
the best agreement (highest value of R). From these results, it can be concluded that the pedestal 
temperature based on ∆∝ρs2 yields the best average agreement with experimental data. 
 
Table 1: Statistical results of the models for type 1 ELMy H-mode discharges. 
 

Pedestal width scaling Cw Cbs RMSE (%) Offset (%) R 

∆∝ρs2 5.10 3.0 28.2 0.5 0.80 

∆∝(ρRq)1/2 0.22 4.5 35.4 2.9 0.75 
∆∝R(βθ,ped)1/2 1.50 3.7 35.5 -1.0 0.73 
∆∝ρ2/3R1/3 1.37 4.9 49.3 -1.1 0.67 
∆∝ε1/2ρθ 2.75 4.9 109.4 9.0 0.28 
∆∝(1/Z)(AH/nped)1/2 0.014 5.9 50.5 -6.5 0.68 

 



The comparisons between the predictions of the models and experimental data are shown in Figs. 
2-7. It can be seen that the predictions of pedestal temperature are in reasonable agreement with 
experimental data for the model with ∆∝ρs2 shown in Fig. 2 and the agreement is not as good for 
the other models shown in Figs. 3-7. 
 

 
Fig. 2: Experimental ion pedestal temperature for 
type I H-mode plasmas compared with the model 
predictions based on ∆∝ρs2. 

 
Fig. 3: Experimental ion pedestal temperature for 
type I H-mode plasmas compared with the model 
predictions based on ∆∝(ρRq)1/2. 

 
Fig. 4: Experimental ion pedestal temperature for 
type I H-mode plasmas compared with the model 
predictions based on ∆∝R(βθ,ped)1/2. 

 
Fig. 5: Experimental ion pedestal temperature for 
type I H-mode plasmas compared with the model 
predictions based on ∆∝ρ2/3R1/3. 

 
Fig. 6: Experimental ion pedestal temperature for 
type I H-mode plasmas compared with the model 
predictions based on ∆∝ε1/2ρθ. 

 
Fig. 7: Experimental ion pedestal temperature for 
type I H-mode plasmas compared with the model 
predictions based on ∆∝(1/Z)(AH/nped)1/2. 

 
 
 



4. H-Mode Pedestal Density Model 
  
In the development of the pedestal density model, an empirical approach is employed. For the 
simplest scaling, the pedestal density is assumed to be a function of line average density (nl). This 
assumption is based on an observation that the density profile between the pedestal and the 
magnetic axis in H-mode discharges is usually rather flat. Therefore, the pedestal density is a 
large fraction of the line average density. It is found that the pedestal density scaling for type I 
ELMy H-mode discharges is about 72% of the line average density, which can be described as 
     ped 0.72 ln n= .      (5) 
This scaling yields an RMSE of 12.2%, R2 of 0.96, and offset of -2.2% with a data set of 626 data 
points (132 from ASDEX-U experiment, 127 from JET experiment, and 367 from JT-60U 
experiment). In Ref. [11], a pedestal density scaling is developed for Alcator CMOD H-mode 
discharges. This scaling is expressed as a function of the line average density, plasma current (Ip), 
and toroidal magnetic field (BT). Using this kind of power law regression fit for the 626 data 
points in the ITPA Pedestal Database (Version 3.2), the best predictive pedestal density scaling 
for type I ELMy H-mode discharges is found to be    

  .  (6) ( ) [ ]( ) [ ]( )
0.99 0.15 0.1220 -3 20 -3

ped l p T10 m 0.74 10 mn n I MA B
−

⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ T

This scaling yields an RMSE of 10.9%, R2 of 0.97, and offset of 3.3%. The comparisons of the 
density models’ predictions for the pedestal density using Eq. (5) and (6) and the experimental 
data are shown in Figs. 8 and 9, respectively. In both figures, the agreement is good for a low 
ratio of pedestal density to the Greenwald density. However, the agreement tends to break away 
at high density. This might indicate that the physics that controls low and high edge density 
might be different.   
 

Fig. 8: The ratios of experimental pedestal 
electron density for type I H-mode plasmas to 
the Greenwald density are compared with the 
ratio of the model predictions using Eq. (5) to 
the Greenwald density. 

Fig. 9: The ratios of experimental pedestal 
electron density for type I H-mode plasmas to the 
Greenwald density are compared with the ratio of 
the model predictions using Eq. (6) to the 
Greenwald density. 

 
 



5. Pedestal Prediction in ITER  
 
The pedestal temperature and density models developed in this paper are used to predict the 
pedestal parameters for the ITER design. For an ITER standard H-mode discharge with 15 MA 
plasma current and the line average density of 1.05x1020 particles/m3, the pedestal density is 
predicted to be 0.76x1020 particles/m3 and 0.95 x1020 particles/m3 using Eqs. (5) and (6), 
respectively. It is worth noting that the pedestal density using Eq.(6) indicate a flat density profile 
since the pedestal density is almost the same as the line average density. This observation is often 
observed in H-mode experiments with high density. In addition, the pedestal density in ITER 
predicted using an integrated modeling code JETTO yields similar result for the density  
profile [12]. The pedestal temperature model based on the width of the pedestal as ∆∝ρs2 and the 
critical pressure gradient model that includes both first and second stability of ballooning modes 
is used to predict the pedestal temperature in ITER. Figure 10 shows the predicted pedestal 
temperature as a function of pedestal density. It can be seen that the pedestal temperature 
decreases as the pedestal density increases. At the predicted pedestal density using Eqs. (5)  
and (6), the predicted pedestal temperature is 1.9 and 1.7, respectively. Under these conditions, it 
is found that the pedestal width in ITER predicted by the model ranges from 4 to 5 cm. 
  

 
Fig. 10: Predictions of pedestal temperature as a function of pedestal density using the pedestal 
temperature model based on ∆∝ρs2

 
6. Conclusions 
 
Pedestal temperature models that include the effects of both the first and second stability of 
ballooning modes are developed for type I ELMy H-mode plasmas in tokamaks. The results for 
the pedestal temperature are compared with experimental data obtained from the ITPA Pedestal 
Database version 3.2. It is found that the pedestal temperature model based on the magnetic and 
flow shear stabilization yields the best agreement with experimental data (with RMSE of 28.2%). 
It is found that the predictions of pedestal temperatures for ITER using the pedestal temperature 
and density models developed ranges from 1.7 to 1.9 keV.   
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