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Abstract.  
Linear and nonlinear computations of peeling-ballooning modes are presented here using equilibria for the  
DIII-D and ITER tokamaks.  Eigenvalue computations for the two configurations show similar stability proper-
ties, and a practical model for particle and energy loss is proposed.  Numerical convergence is shown for time-
dependent computations.  Two-fluid results show stabilization at large toroidal wavenumber, consistent with 
analytical theory that considers the localized nature of the diamagnetic drift velocity.  Initial nonlinear two-fluid 
results show evolution toward a helically localized structure, unlike previous single-fluid results. 

1. Introduction 
High-performance tokamak plasmas operate in the H-mode regime that is characterized by 
large edge plasma gradients. While the existence of the edge transport barrier that gives rise 
to these gradients improves the overall plasma confinement, the resultant free energy from 
the large gradients causes plasma instabilities, known as Edge Localized Modes (ELMs). 
Present planning may put ITER operation in the Type-I ELM regime, where power loads 
caused by the ELMs can limit the plasma divertor lifetime [1]. An important problem facing 
the fusion community is the optimization of ELMy H-mode operation while minimizing the 
deleterious effects of ELMs.  

Theoretical progress in understanding ELMs has been made by investigating the stability 
boundaries of peeling-ballooning modes using an ideal MHD model [2, 3, 4, 5]. In this study, 
ideal-MHD peeling-ballooning stability analysis is carried out for a series of equilibria that 
are generated with the TEQ and TOQ equilibrium codes. The H-mode pedestal pressure and 
parallel component of plasma current density are varied in a systematic way in order to cover 
the relevant parameter space for a specific ITER discharge. The ideal MHD stability codes 
DCON, ELITE, and BALOO are employed to verify whether each equilibrium profile is un-
stable to either peeling or ballooning behavior in the pedestal region.  

Linear ideal MHD calculations measure the sources of free energy, but more comprehensive 
models and nonlinear effects are needed to understand ELM events. Time-dependent compu-
tations with the extended-MHD code NIMROD [6] allow us to consider two-fluid effects and 
nonlinear mode coupling. Though solved in single-fluid form [7], Hall and ep∇  terms may 

be included in the electric field, and flow velocity evolution may include Braginskii gyrovis-
cous stress.  Anisotropic thermal conduction may be used in either two-fluid or resistive 
MHD computations with NIMROD.  

2. Linear Studies and Numerical Convergence 
Ideal ballooning codes have long been described in terms of an s-α diagram [8], which plots 
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a normalized pressure profile, α, against the normalized magnetic shear, s.  With peeling-
ballooning modes, the most unstable mode can occur at finite-n [2]. Here, it is more useful 
analyze stability with respect to parallel current density, j||, because it more directly accesses 
the free energy available to drive the instabilities.  To map out the instability diagrams for the 
H-mode plasma, the codes DCON [9], ELITE [2, 3], and BALOO [10] are used.  DCON is 
used for the low n-modes (n<8), while ELITE is used for intermediate mode numbers, and 
BALOO is used for the infinite-n ballooning mode limit. In Fig. 1, the results of such a study 
are shown for a high triangularity DIII-D discharge and for an ITER discharge. While the ge-
ometry and plasma parameters for the ITER and DIII-D tokamaks are very different, the sta-
bility thresholds for these two tokamaks are surprisingly close to each other. There are still 
important differences between two stability diagrams in Fig. 1, such as wider second stability 
ballooning stability region for ITER, but the critical values for the normalized pressure gradi-
ent and the parallel component of current density are about the same. The peeling-ballooning 
stability results may be combined with a model for particle and heat losses during an ELM 
crash and a model for ELM width to provide a practical approach for integrated predictive 
modeling of ELMy H-mode plasmas [11]. Given the excellent diagnostic capabilities of the 
DIII-D tokamak, the following focuses on DIII-D, where experimental validation is possible 
and necessary before extrapolating to ITER parameters. 
 

  
FIG 1.  Peeling-ballooning stability maps for DIII-D (left) and ITER (right) discharges. 

With their broad range of unstable toroidal mode numbers of order 10 and radial localization 
to where the q-value increases sharply, ELMs tend to have high poloidal mode numbers (m). 
The radial localization coincides with the large pressure and current density gradients that 
drive the modes. In this work, we use MHD equilibria fitted to experimental data from the 
DIII-D discharge 113317. The flux surface profiles are shown in Fig. 2, including the density 
profiles that is based on laboratory measurements. Both the temperature profile and the num-
ber density profile drop by approximately a factor of four from just inside to outside the sepa-
ratrix. To satisfy MHD equilibrium in the edge plasma region beyond the separatrix, the tem-
perature and number density are considered uniform at the values provided by the equilib-
rium file for the separatrix (Te = 100 eV and n = 1.2x1019 m-3, respectively).  
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FIG 2.  Flux-surface profiles for the equilibrium fit to the DIII-D discharge 113317.  Equilibrium 
pressure and number density are shown on the left, and average parallel current density and safety 
factor are shown on the right. 
 
Before discussing linear results, we consider numerical convergence properties for the NIM-
ROD algorithm on the radially localized, high-poloidal-wavenumber ELMs. The code uses 
high-order quadrilateral finite elements for the poloidal plane, and finite Fourier series for the 
toroidal direction. The finite element grid is non-uniform, and we find it advantageous to 
pack the elements radially near the separatrix, leaving the core with relatively large elements. 
The mesh is well-aligned with the equilibrium magnetic flux except near the separatrix and in 
the open-field region. The boundary of the domain conforms to the shape of the closed flux 
surfaces and is located at approximately the same average distance from the separatrix as the 
wall in the experiment. Convergence with respect to spatial resolution has been confirmed by 
changing the number of elements in the mesh and by varying the order of the polynomial ba-
sis functions from two (biquadratic elements) to eight. The numerical representation of vector 
fields does not identically satisfy the divergence constraint for the magnetic field, and nu-
merical diffusion is used to control errors [6]. Thus, we check for decreasing magnetic diver-
gence error, in addition to convergence on a mode's growth rate, when testing resolution. 

Results for three representative wavenumbers, computed with the resistive MHD model and 
anisotropic heat conduction, are shown in Fig. 3. The resistivity profile is based on the 
Spitzer model applied to the equilibrium temperature but multiplied by a constant to make 
η µ0 ≅ 7.0 m2/s in the pedestal region.  The anisotropic heat conduction has ||χ =1.5×107 

m2/s and ⊥χ =1.5 m2/s, and there is an artificial particle diffusivity of Dn = 2.5 m2/s. Figure 3 
shows that high-order polynomials are needed to achieve convergence with the 20×128 mesh.  
The modes with the largest n-values require the greatest poloidal resolution to achieve con-
vergence, as expected from the resonance condition of m=qn.  The finer poloidal structure of 
the n=42 mode relative to the n=21 mode is evident from the computed eigenfunctions (Fig. 
4). The larger n-value modes also have larger growth rates, a ballooning-like character that is 
not in agreement with ideal-MHD results for the same equilibrium. This may result from fi-
nite resistivity, which is included in the NIMROD computations; further study is warranted.  
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FIG 3.  Computed growth-rate and divergence error, measured as ( ) ∫∫ ⋅∇ dVolbdVolb 22 ~~ / , for three 

modes in the resistive MHD spectrum with anisotropic thermal conduction (values are divided by 
1.5).  The pedestal electrical diffusivity is 7 m2/s, ν=25 m2/s, ∆t=5×10-8 s, and D=2.5 m2/s. 

   
FIG 4.  Toroidal component of flow velocity from the resistive MHD eigenmodes of the n=21 mode 
(left) and n=42 mode (right), computed with polynomial basis functions of degree 6. 

Resolution requirements with the two-fluid electric field and gyroviscosity are more strin-
gent, but the stabilizing effect of diamagnetic rotation leads to a growth-rate spectrum that 
peaks at moderate n-value.  Convergence studies similar to those shown in Figs. 3 have been 
performed for this model.  At the parameters used for MHD, the peak of the two-fluid spec-
trum also converges. Increasing the particle diffusivity to 5 m2/s facilitates convergence for 
the largest n-values, and we find that modes with n≥30 are not growing modes. The most 
unstable modes have toroidal wavenumbers between 10 and 20, as shown in Fig. 5, the com-
puted growth-rate spectrum for n≤42. Resistive MHD results for the same parameters are also 
shown.  Estimating the point of two-fluid stabilization from slab geometry analysis [12] does 
not explain the two-fluid threshold.  The poloidal component of diamagnetic drift velocity 

( 2neBp∇×B , plotted in Fig. 6) peaks at nearly 4×104 m/s.  With the analytical estimate 

from Ref. 12 suggesting stability at MHDi rv γω 2m ==∗ , the observed MHD growth-rate of 

approximately 2×105 s-1, minor radius r ≅ 0.5 m, and q-value of approximately 3, one might 
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expect stability at n=m/q of order unity.  However, the radial extent of the diamagnetic drift 
is narrower than the ELM eigenfunctions, and radial localization is known to reduce the sta-
bilizing effect of ion diamagnetic drift [13]. For the modes remaining unstable, two-fluid ef-
fects lead to visible distortion of the eigenfunctions. The flow pattern of the n=21 mode, for 
example, is significantly sheared along the outboard portion of its resonant surface (Fig. 6; 
compare with the n=21 mode shown in Fig. 4), which is the location of peak diamagnetic 
drift.  The growth rate of this mode is 5% smaller in the two-fluid computation than in the 
single-fluid MHD computation. 
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FIG 5.  Comparison of two-fluid and MHD linear growth-rate spectra for toroidal wavenumbers 
0≤n≤42 obtained with the parameters of the nonlinear two-fluid simulation of Sect. 5. 

   
FIG 6.  Poloidal component of diamagnetic drift velocity (left) and toroidal component of flow veloc-
ity for the n=21 eigenfunction computed with the two-fluid model.  Compare with Fig. 4. 

3. Nonlinear Results 
The two-fluid computation is based on the equilibrium data for the DIII-D discharge 113317 
(see Fig. 2), has dissipation coefficients of ||χ =1.5×107 m2/s, ⊥χ =1.5 m2/s, and ν=25 m2/s, 
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and uses a poloidal mesh of 20×120 biquintic finite elements.  At this resolution and D=2.5 
m2/s, linear growth rates are accurate to 35% in comparison with converged results.  (The 
particle diffusivity of 5 m2/s is used in the nonlinear two-fluid computation.) The quantita-
tive error from the reduced resolution does not affect the shape of the linear spectrum, how-
ever, and we expect the primary features of the nonlinear evolution to be valid at least quali-
tatively.  Initial conditions use the results of the linear two-fluid spectrum computation shown 
in Fig. 5.  The perturbation energies are slightly peaked toward the low end of the unstable 
group of modes, because they are first to emerge from the random perturbations used to initi-
ate the linear calculations and thus have a head start in the nonlinear computation.  Their am-
plitude at the beginning of the nonlinear computation is a somewhat arbitrary choice, as long 
as it does not lead to strong nonlinear effects immediately.  The evolution of kinetic fluctua-
tion energies over the first nonlinear time-steps shows two-wave coupling producing a high-n 
harmonic of the spectrum peak and coupling to n-values below 10 (Fig. 7), but significant 
growth still follows before distortions of the pedestal gradients become apparent. 

In the final state of the two-fluid computation presented here, the fluctuations are growing at 
a decreasing rate, and density and temperature perturbations approach the pedestal values for 
number density and temperature.  From configuration space, we observe that the perturba-
tions do not extend over the entire outboard side of the torus, unlike the single-fluid MHD 
results.  Instead, they are grouped into a helical band, as shown in Figs. 8 and 9.  In the DIII-
D 113317 equilibrium, the ELMs are resonant near q=3, and the poloidal cross-section (Fig. 
8) shows three groups of perturbations: one near the separatrix, another on the outboard side 
above the midplane, and the third at the top of the separatrix.  With respect to nonlinear cou-
pling to low-n leading to localization, this result shares features found with the reduced-
Braginskii model applied to harmonics of n=5 [4].  Although it is not filamentary, the nonlin-
ear structure in our full-geometry computation covers only a small fraction of the toroidal 
angle.  We note, however, that while the phases of the initial perturbations have not been pre-
arranged, it remains to be verified that such localization is the result of phase locking during 
the evolution. 
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FIG 7.  Evolution of the magnetic fluctuation energy from the two-fluid computation.  The initial state 
is from the linear two-fluid spectrum calculation, and times are with respect to the start of the nonlin-
ear simulation. 
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FIG 8.  Number density at toroidal angle φ=0 at 7.92 µs into the nonlinear two-fluid computation.   

 
FIG 9.  Temperature perturbations along the surface where n=3×1019 m-3 at 7.72 µs into the nonlinear 
two-fluid computation.  The maximum temperature perturbation is 100 eV, 25% of the pedestal tem-
perature.  Perturbed flow velocity vectors are superposed. 
 
4. Discussion and Conclusions 
The initial linear results with the DCON, BALOO, and ELITE codes show that the peeling 
stability threshold for the ITER equilibrium is close to the stability threshold of a high trian-
gularity DIII-D discharge.  
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To include more effects, time-dependent computations are performed with the NIMROD 
code.  Our convergence studies find that modes with large poloidal wavenumbers can be 
computed accurately when high-order polynomials are used for basis functions.  The con-
verged results for linear resistive MHD show qualitative differences from the linear ideal-
MHD results.  Preliminary evidence suggests that resistive ballooning occurs in the NIM-
ROD computations, but more work is needed to clarify this issue.  Studies with the ELITE 
code [2, 3] use a simple analytic dispersion relation [12] that approximately takes into ac-
count with analytical calculations that consider the narrow diamagnetic flow profile of H-
mode plasmas [13].  However, NIMROD is able to take this into account fundamentally.  

The nonlinear two-fluid simulation presented here is at the forefront of the capabilities of 
nonlinear magnetofluid codes.  It required significant computational resources in addition to 
recent algorithm development.  Although in many ways preliminary, the results show that the 
numerical tools for studying the nonlinear behavior of peeling-ballooning modes with a com-
plete two-fluid model are available.  Already, we have found that coupling among the unsta-
ble band of modes at intermediate n-values generates harmonics in the linearly stable range 
of wavenumbers (n>30 for the case considered). The nonlinear coupling also produces an 
n=1 distortion.  The unstable modes are resonant at or near the q=3 surface, so the n=1 distor-
tion induces an m=3 pattern in poloidal angle.  This collects fine-scale spatial oscillations 
into a localized helical structure as the perturbation amplitude approaches the level of the 
density and temperature pedestal of the equilibrium. 
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