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Abstract.

Linear and nonlinear computations of peeling-ballag modes are presented here using equilibriattfer
DIII-D and ITER tokamaks. Eigenvalue computatiémsthe two configurations show similar stabilityoper-
ties, and a practical model for particle and endogg is proposed. Numerical convergence is shiowtime-

dependent computations. Two-fluid results shovbiktation at large toroidal wavenumber, consistesth

analytical theory that considers the localized reatf the diamagnetic drift velocity. Initial naméar two-fluid
results show evolution toward a helically localizgtucture, unlike previous single-fluid results.

1. Introduction

High-performance tokamak plasmas operate in theddenregime that is characterized by
large edge plasma gradients. While the existendbeo&dge transport barrier that gives rise
to these gradients improves the overall plasmaiemient, the resultant free energy from
the large gradients causes plasma instabilitieewknas Edge Localized Modes (ELMs).
Present planning may put ITER operation in the TygtM regime, where power loads
caused by the ELMs can limit the plasma diverti@tiine [1]. An important problem facing
the fusion community is the optimization of ELMyrHede operation while minimizing the
deleterious effects of ELMSs.

Theoretical progress in understanding ELMs has bmade by investigating the stability
boundaries of peeling-ballooning modes using aali¥HD model [2, 3, 4, 5]. In this study,
ideal-MHD peeling-ballooning stability analysis darried out for a series of equilibria that
are generated with the TEQ and TOQ equilibrium sodée H-mode pedestal pressure and
parallel component of plasma current density areegtan a systematic way in order to cover
the relevant parameter space for a specific ITERRhadirge. The ideal MHD stability codes
DCON, ELITE, and BALOO are employed to verify whetleach equilibrium profile is un-
stable to either peeling or ballooning behaviothia pedestal region.

Linear ideal MHD calculations measure the sourdesee energy, but more comprehensive
models and nonlinear effects are needed to under&aM events. Time-dependent compu-
tations with the extended-MHD code NIMROD [6] allas to consider two-fluid effects and
nonlinear mode coupling. Though solved in singledfifform [7], Hall andCp, terms may
be included in the electric field, and flow velgcévolution may include Braginskii gyrovis-
cous stress. Anisotropic thermal conduction mayubed in either two-fluid or resistive
MHD computations with NIMROD.

2. Linear Studies and Numerical Convergence
Ideal ballooning codes have long been describadrins of ars-a diagram [8], which plots
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a normalized pressure profila, against the normalized magnetic shear,With peeling-
ballooning modes, the most unstable mode can aaictinite-n [2]. Here, it is more useful
analyze stability with respect to parallel currdensity,j;, because it more directly accesses
the free energy available to drive the instab#iti@o map out the instability diagrams for the
H-mode plasma, the codes DCON [9], ELITE [2, 3]d &ALOO [10] are used. DCON is
used for the low n-modes (n<8), while ELITE is udedintermediate mode numbers, and
BALOO is used for the infinite-n ballooning modmlt. In Fig. 1, the results of such a study
are shown for a high triangularity DIII-D discharged for an ITER discharge. While the ge-
ometry and plasma parameters for the ITER and DHiibkamaks are very different, the sta-
bility thresholds for these two tokamaks are ssipgly close to each other. There are still
important differences between two stability diagsamFig. 1, such as wider second stability
ballooning stability region for ITER, but the ccil values for the normalized pressure gradi-
ent and the parallel component of current denseyadout the same. The peeling-ballooning
stability results may be combined with a model particle and heat losses during an ELM
crash and a model for ELM width to provide a pmadtiapproach for integrated predictive
modeling of ELMy H-mode plasmas [11]. Given the @dent diagnostic capabilities of the
DIlI-D tokamak, the following focuses on DIII-D, whe experimental validation is possible
and necessary before extrapolating to ITER parashete
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FIG 1. Peeling-ballooning stability maps for DDI{left) and ITER (right) discharges.

With their broad range of unstable toroidal modenhars of order 10 and radial localization
to where the g-value increases sharply, ELMs terldaive high poloidal mode numbers (m).
The radial localization coincides with the largeesgure and current density gradients that
drive the modes. In this work, we use MHD equibibfitted to experimental data from the
DIII-D discharge 113317. The flux surface profil® shown in Fig2, including the density
profiles that is based on laboratory measurem@&atth the temperature profile and the num-
ber density profile drop by approximately a faaddfour from just inside to outside the sepa-
ratrix. To satisfy MHD equilibrium in the edge phaa region beyond the separatrix, the tem-
perature and number density are considered unittrthe values provided by the equilib-
rium file for the separatrix = 100 eVandn = 1.2x18° m?, respectively).
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FIG 2. Flux-surface profiles for the equilibriurit fo the DIII-D discharge 113317. Equilibrium
pressure and number density are shown on thealedt,average parallel current density and safety
factor are shown on the right.

Before discussing linear results, we consider nigakeconvergence properties for the NIM-
ROD algorithm on the radially localized, high-paal-wavenumber ELMs. The code uses
high-order quadrilateral finite elements for thdopaal plane, and finite Fourier series for the
toroidal direction. The finite element grid is nanform, and we find it advantageous to
pack the elements radially near the separatrixjrigahe core with relatively large elements.
The mesh is well-aligned with the equilibrium magméux except near the separatrix and in
the open-field region. The boundary of the domanfarms to the shape of the closed flux
surfaces and is located at approximately the saraege distance from the separatrix as the
wall in the experiment. Convergence with respecpatial resolution has been confirmed by
changing the number of elements in the mesh andatyng the order of the polynomial ba-
sis functions from two (biquadratic elements) whei The numerical representation of vector
fields does not identically satisfy the divergemmmstraint for the magnetic field, and nu-
merical diffusion is used to control errors [6].uBh we check for decreasing magnetic diver-
gence error, in addition to convergence on a mage\sth rate, when testing resolution.

Results for three representative wavenumbers, ctedpuith the resistive MHD model and
anisotropic heat conduction, are shown in Fig. Be Tesistivity profile is based on the
Spitzer model applied to the equilibrium temperatbut multiplied by a constant to make

n/u, C7.0 m¥s in the pedestal region. The anisotropic heat cotioiu haS)(||:1.5><107

m?/s and yg=1.5 nf/s, and there is an artificial particle diffusiviof D, = 2.5 nf/s. Figure 3

shows that high-order polynomials are needed teegeltonvergence with the 2028 mesh.
The modes with the largest n-values require thatgse poloidal resolution to achieve con-
vergence, as expected from the resonance conditiorrgn. The finer poloidal structure of
the n=42 mode relative to the=21 mode is evident from the computed eigenfunsti@ig.

4). The larger n-value modes also have larger droates, a ballooning-like character that is
not in agreement with ideal-MHD results for the saequilibrium. This may result from fi-
nite resistivity, which is included in the NIMRODmputations; further study is warranted.
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FIG 3. Computed growth-rate and divergence emeasured a?(D i)deoI /J'BdeoI , for three

modes in the resistive MHD spectrum with anisotrofiiermal conduction (values are divided by
1.5). The pedestal electrical diffusivity is 7/s)1=25 nf/s, At=5x10% s, andD=2.5 nf/s.
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FIG 4. Toroidal component of flow velocity fromethesistive MHD eigenmodes of the n=21 mode
(left) and n=42 mode (right), computed with polynahbasis functions of degree 6.

Resolution requirements with the two-fluid electiield and gyroviscosity are more strin-
gent, but the stabilizing effect of diamagneticatmin leads to a growth-rate spectrum that
peaks at moderate n-value. Convergence studialsusim those shown in Figs. 3 have been
performed for this model. At the parameters usedfHD, the peak of the two-fluid spec-
trum also converges. Increasing the particle difftysto 5 mé/s facilitates convergence for
the largest n-values, and we find that modes wi#BOnare not growing modes. The most
unstable modes have toroidal wavenumbers betweemd @0, as shown in Fig. 5, the com-
puted growth-rate spectrum fo£42. Resistive MHD results for the same parametersiao
shown. Estimating the point of two-fluid stabiliwan from slab geometry analysis [12] does
not explain the two-fluid threshold. The poloid@mponent of diamagnetic drift velocity

(BxDp/neBz, plotted in Fig. 6) peaks at nearly @' m/s. With the analytical estimate
from Ref. 12 suggesting stability at; =mv/r =2)\yp , the observed MHD growth-rate of
approximately 210° s*, minor radiusr L 0.5 m, andg-value of approximately 3, one might
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expect stability at n=my/of order unity. However, the radial extent of thiamagnetic drift
is narrower than the ELM eigenfunctions, and rattiahlization is known to reduce the sta-
bilizing effect of ion diamagnetic drift [13]. Féhe modes remaining unstable, two-fluid ef-
fects lead to visible distortion of the eigenfuno8. The flow pattern of the n=21 mode, for
example, is significantly sheared along the outdgaortion of its resonant surface (Fig. 6;
compare with the n=21 mode shown in Fig. 4), whghhe location of peak diamagnetic
drift. The growth rate of this mode is 5% smalleithe two-fluid computation than in the
single-fluid MHD computation.
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FIG 5. Comparison of two-fluid and MHD linear grihwrate spectra for toroidal wavenumbers
0<n=42 obtained with the parameters of the nonlinearftuid simulation of Sect. 5.
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FIG 6. Poloidal component of diamagnetic driftogdy (left) and toroidal component of flow veloc-
ity for the n=21 eigenfunction computed with thetfluid model. Compare with Fig. 4.

3. Nonlinear Results
The two-fluid computation is based on the equilibridata for the DIII-D discharge 113317
(see Fig. 2), has dissipation coefficients xqf=1.5x10" mf/s, yp=1.5 nf/s, andv=25 nf/s,
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and uses a poloidal mesh of<A@0 biquintic finite elements. At this resolutiand D=2.5
m?/s, linear growth rates are accurate to 35% in @uispn with converged results. (The
particle diffusivity of 5 s is used in the nonlinear two-fluid computatiohe quantita-
tive error from the reduced resolution does natcifthe shape of the linear spectrum, how-
ever, and we expect the primary features of thdimear evolution to be valid at least quali-
tatively. Initial conditions use the results oé imear two-fluid spectrum computation shown
in Fig. 5. The perturbation energies are sligipthaked toward the low end of the unstable
group of modes, because they are first to emeage the random perturbations used to initi-
ate the linear calculations and thus have a heatistthe nonlinear computation. Their am-
plitude at the beginning of the nonlinear compotais a somewhat arbitrary choice, as long
as it does not lead to strong nonlinear effects eatiately. The evolution of kinetic fluctua-
tion energies over the first nonlinear time-stepsgs two-wave coupling producing a high-n
harmonic of the spectrum peak and coupling to maslbelow 10 (Fig. 7), but significant
growth still follows before distortions of the peti# gradients become apparent.

In the final state of the two-fluid computation peated here, the fluctuations are growing at
a decreasing rate, and density and temperaturerpations approach the pedestal values for
number density and temperature. From configuradjpace, we observe that the perturba-
tions do not extend over the entire outboard sidéhe torus, unlike the single-fluid MHD
results. Instead, they are grouped into a hdtieadd, as shown in Figs. 8 and 9. In the DIII-
D 113317 equilibrium, the ELMs are resonant rege, and the poloidal cross-section (Fig.
8) shows three groups of perturbations: one neaséparatrix, another on the outboard side
above the midplane, and the third at the top ofstiearatrix. With respect to nonlinear cou-
pling to low-n leading to localization, this reswhares features found with the reduced-
Braginskii model applied to harmonics of n=5 [#lthough it is not filamentary, the nonlin-
ear structure in our full-geometry computation asvenly a small fraction of the toroidal
angle. We note, however, that while the phasebleoinitial perturbations have not been pre-
arranged, it remains to be verified that such ieatibn is the result of phase locking during
the evolution.
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FIG 7. Evolution of the magnetic fluctuation enefgpm the two-fluid computation. The initial stat
is from the linear two-fluid spectrum calculati@nd times are with respect to the start of theinenl
ear simulation.
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FIG 9. Temperature perturbations along the surfaveren=3x10" m?® at 7.72us into the nonlinear
two-fluid computation. The maximum temperatureymbration is 100 eV, 25% of the pedestal tem-
perature. Perturbed flow velocity vectors are supsed.

4. Discussion and Conclusions

The initial linear results with the DCON, BALOO, &ELITE codes show that the peeling
stability threshold for the ITER equilibrium is el to the stability threshold of a high trian-
gularity DIII-D discharge.
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To include more effects, time-dependent computatiare performed with the NIMROD

code. Our convergence studies find that modes lartpe poloidal wavenumbers can be
computed accurately when high-order polynomials wesed for basis functions. The con-
verged results for linear resistive MHD show quadiNte differences from the linear ideal-
MHD results. Preliminary evidence suggests thaistiee ballooning occurs in the NIM-

ROD computations, but more work is needed to glahfs issue. Studies with the ELITE

code [2, 3] use a simple analytic dispersion refa{il2] that approximately takes into ac-
count with analytical calculations that considee tmarrow diamagnetic flow profile of H-

mode plasmas [13]. However, NIMROD is able to tdie into account fundamentally.

The nonlinear two-fluid simulation presented heyeai the forefront of the capabilities of

nonlinear magnetofluid codes. It required sigaifit computational resources in addition to
recent algorithm development. Although in many svayeliminary, the results show that the
numerical tools for studying the nonlinear behawbpeeling-ballooning modes with a com-

plete two-fluid model are available. Already, wava found that coupling among the unsta-
ble band of modes at intermediate n-values gergeraemonics in the linearly stable range
of wavenumbers (n>30 for the case considered). fdminear coupling also produces an
n=1 distortion. The unstable modes are resonamt ¢ar the=3 surface, so the n=1 distor-

tion induces an m=3 pattern in poloidal angle. sTtwllects fine-scale spatial oscillations
into a localized helical structure as the pertudmamplitude approaches the level of the
density and temperature pedestal of the equilibrium
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