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Abstract. The results of particle simulations of a typical NNB-heated JT-60U discharge (# E036378), performed
by the HMGC particle-in-cell code, are presented. We observe that the linear-growth phase is dominated by a
fast-growing mode, localized at half radius, near the maximum of the energetic-ion pressure gradient and with
a significant coupling with the Alfvén continuum, showing the energetic-particle-driven nature of the mode. As
the nonlinear effects become important, a macroscopic outward displacement of the energetic ions is observed,
producing a significant reduction of their density in the central region. These results seem to match quite well the
dynamics of the abrupt large-amplitude event (ALE) experimentally observed in the JT-60U discharge. The time
scale and frequency spread of the ALE are well reproduced too. Then, the issue of the almost quiescent phase
following the ALEs, characterized by weaker fast frequency sweeping (fast FS) modes, is investigated. We show
that it is not possible to explain such a phase as the consequence of the mere relaxation of the energetic-ion density
profile produced by the ALE. The decrease of the instability level of the system can however be fully accounted for
by properly taking into account the nonlinear modification of the energetic-ion distribution function in the velocity
space. An interpretation of the full JT-60U bursting-mode phenomenology is finally presented.

1. Introduction

In a burning plasma, alpha particles are expected to transfer their energy via Coulomb colli-
sions to the thermal plasma, thus providing a nuclear self-heating mechanism and a route to
ignition. The fusion reactions generate energetic particles characterized by velocities in the
super-Alfvénic range, and it is well known that they can resonate with, and possibly destabilize,
shear Alfvén modes. The mutual nonlinear interaction of shear Alfvén and energetic parti-
cles can, in turn, affect the energetic ion transport and confinement properties. Experimental
evidences of rapid transport of energetic ions related with fluctuations in the Alfvén-mode fre-
quency range have been observed in plasmas heated by different auxiliary power systems [1],
as reported, e.g., in the JT-60U tokamak [2, 3, 4], in connection with the so called Abrupt Large
amplitude Events (ALEs). A review of experimental observations of collective mode effects
on fast ions is given in Ref. [1] and references therein. Meanwhile, evidence that energetic-ion
redistribution can take place because of fast growing Alfvén modes (e.g., Energetic Particle
driven Modes (EPMs) [5]) has been found in particle-simulation studies [6, 7, 8, 9, 10, 11, 12].

In this paper we test the particle simulation approach versus the experimental observations of
the Alfvén mode dynamics in JT-60U discharges. We will show that simulations performed
by the Hybrid MHD-Gyrokinetic Code HMGC [6, 13, 14] yield results in fair qualitative and
quantitative agreement with those observations.

2. The Model

The plasma model adopted in the HMGC code consists of a thermal (core) plasma and an
energetic-ion population. The former is described by reduced O(ε3) MHD equations [15, 16] in
the limit of zero pressure (ε being the inverse aspect ratio of the torus), including resistivity and
viscosity terms. The reduced MHD equations expanded to O(ε3) allow us to investigate equi-
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libria with shifted circular magnetic surfaces. The energetic-ion population is described by the
nonlinear gyrokinetic Vlasov equation [17, 18], expanded in the limit k⊥ρH � 1 (with k⊥ being
the perpendicular component of the wave vector to the magnetic field, and ρH the energetic-ion
Larmor radius) but retaining full magnetic drift orbit widths, and solved by particle-in-cell (PIC)
techniques. The coupling between energetic ions and thermal plasma is obtained through the
divergence of the energetic-ion pressure tensor, which enters the vorticity equation [19]. Nu-
merical simulations are performed retaining the relevant thermal-plasma quantities – the on-axis
equilibrium magnetic field, major and minor radii (R0 and a, respectively), the safety-factor q,
the plasma density ne, the electron temperature Te –, the anisotropy of the energetic-ion distri-
bution function and the ratio βH between fast ion and magnetic pressures.

Energetic ions are loaded in the (µ, v||, ψ) space, (µ and v|| being the magnetic moment and the
parallel velocity, and ψ the magnetic flux function, respectively) according to a slowing-down
(SD) distribution function. A strongly anisotropic SD distribution function is assumed, with an
upper energy cut-off given by the injection energy of the (almost tangential) Negative Neutral
Beam (NNB) ions and the critical energy Ec given by the Stix expression [20]. Experimental
values are adopted for bulk ion (deuterium) and electron densities.

For simplicity we neglect the nonlinear mode-mode coupling among different toroidal mode
numbers, then limiting the analysis to the evolution of a single toroidal mode n, while keeping
fully nonlinear dynamics for energetic ions. Fluid nonlinearities are not expected indeed to
considerably alter shear-Alfvén mode dynamics [6] for the cases under investigation [21].

3. Bursting modes in JT-60U

Two different types of bursting modes, both in the frequency range of Alfvén modes, have been
observed by MHD spectroscopy in auxiliary heated (NNB) discharges in the JT-60U tokamak.
The first one, the ALE [2], is characterized by a time scale of the order of hundred microsec-
onds, a relatively large fluctuating magnetic field level (B̃θ/Bθ ∼ 10−3 at the first wall) and
large growth rates (corresponding to wide frequency spectra ∆ω ∼ ω ∼ 50 kHz). The ALEs
are followed by a significant drop of the neutron emission rate in the central plasma region,
which has been interpreted as a radial redistribution of the energetic ions, producing a marked
reduction of their on-axis density. The repetition rate of ALEs appears to be related with the
intensity of the event itself, as measured by the amount of such reduction. In the relatively qui-
escent phase between two ALEs, bursting modes of a second type, the fast frequency sweeping
(fast FS) modes [2], are observed. Such modes are characterized by longer time scale (few
milliseconds), lower growth rate and fluctuating field level, and much smaller redistribution of
the energetic ions than ALEs. Most of them consist of bifurcating branches, chirping up and
down in frequency.

In order to provide a possible explanation of this phenomenology in the framework of the non-
linear behavior of Alfvén modes, we perform particle simulations of a typical NNB-heated JT-
60U discharge (# E036378) with the HMGC code [13]. In particular, we simulate the dynamics
of energetic ion interactions with Alfvén modes, assuming the radial profiles experimentally
observed immediately before an ALE, and postulating a strongly anisotropic SD distribution
function in velocity space for the energetic deuterons injected at 0.397 MeV by the NNB auxil-
iary heating system, with on-axis density nH ≈ 0.12×1019 m−3. Other relevant parameters are:
a = 0.95 m, R0 = 3.3 m, toroidal magnetic field BT = 1.2 T, on-axis ne = 2.5 × 1019 m−3,
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FIG. 1.: Contour plots of the power spectrum of the fluctuating scalar potential in the (r/a, ω/ωA0)
plane, for a typical JT-60U discharge (# E036378), during the linear-growth phase (left) and the early
(centre) and late (right) saturated phases. Modes with toroidal number n = 1 are considered. The Alfvén
continuum spectrum is also plotted by the black (solid) line. Here, ωA0 ≡ vA0/R0 is the on-axis Alfvén
frequency and vA0 the on-axis Alfvén velocity.

on-axis ion density ni = 1.74× 1019 m−3 (main ion species: deuterium), on-axis Te = 2.1 keV,
on-axis safety factor q ≈ 1.3. Modes with toroidal number n = 1 are considered, to compare
simulation results with the experimental observations. The linearly unstable phase is dominated,
in this “ALE” simulation, by a fast-growing mode (γ/ω ≈ 0.5), located around the maximum
energetic-ion pressure gradient (r/a ≈ 0.5) and characterized by a significant coupling with the
Alfvén continuum, showing the energetic-particle-driven nature of the mode (see Fig. 1. left,
where the contour plot of the power spectrum of the fluctuating scalar potential is shown in the
(r, ω) plane). Once the mode saturates, a complex phenomenology appears. At an earlier stage,
the configuration is dominated by a Toroidal Alfvén Eigenmode (TAE)-like mode, localized
around r/a ≈ 0.8, on the lower part of one throat of the Alfvén continuum. The original mode,
localized at half radius, is replaced by a couple of nearly degenerate modes. A weak core-
localized mode also appears, with frequency well localized in the toroidal gap (Fig. 1. centre).
At later times, the core-localized mode becomes the dominant one, while the external mode still
persists at lower amplitudes (Fig. 1. right).

Figure 2. shows the contour plot in the energetic-ion (Ê, α) plane of the wave-particle power
transfer (averaged over the poloidal and toroidal angles) during the linear phase at r/a ≈ 0.5,
where the most unstable mode is peaked. Positive sign corresponds to ions pumping energy
into the wave. Here, Ê and α are defined by Ê ≡ µ̂ + v̂2

||/2, α ≡ arccos[v̂||/(2µ̂ + v̂2
||)

1/2],
with µ̂ ≡ µΩH0/mHv2

H and v̂|| ≡ v||/vH being the normalized magnetic moment and parallel
velocity, and mH , vH and ΩH0 the energetic-ion mass, injection velocity and on-axis Larmor
frequency, respectively. The resonant drive is apparently given by circulating energetic ions,
consistently with the nearly tangential beam injection; it appears to be quite broad in energy, in
agreement with the estimates based on the experimental measurements [22].

As the nonlinear effects become important, a macroscopic outward displacement of the ener-
getic ions is observed, producing a significant reduction of their density in the central region
(Fig. 3. left), which matches fairly well the observed energetic-ion density profile after the ALE
(black curve in Fig. 3. left). The fluctuating poloidal magnetic field B̃θ vs. t (at a radial position
close to plasma boundary) is plotted in Fig. 3. centre, while Fig. 3. right shows the power spec-
trum of the same quantity in the plane (t, ω). The time scale ∆t of the “burst” is ∆t ' 200ω−1

A0 ,
which corresponds to ∆t ' 150µs. The frequency spread is of order ∆ω ' 40 kHz. Both these
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FIG. 2.: Contour plot in the energetic-ion (Ê, α) plane of the wave-particle power transfer (averaged
over the poloidal and toroidal angles) during the linear phase, at r/a ≈ 0.5, where the most unstable
mode is peaked. Positive sign corresponds to ions pumping energy into the wave. The solid lines contain
the trapped particle region. Ê = 1 corresponds to the injection energy of the NNB ions.

results are close to the experimental observations.

Given the fair qualitative and quantitative agreement between numerical results and experimen-
tal observations, we investigate whether the nonlinear dynamics described by our simulations
can also explain the relatively quiescent phase (low amplitude fluctuating fields with negligible
effects on the energetic-ion distribution) between two successive ALEs. A possible explana-
tion of such a quiescent phase could be that the modification of the energetic-ion radial density
gradient reduces the instability level of the system after an ALE. To check this hypothesis, we
perform a simulation (“after ALE”) initializing the energetic-ion density profile equal to that
experimentally observed after the ALE, while postulating, as before, an anisotropic SD distri-
bution function in the velocity space. The linear growth rate of the mode is lower (γ/ω ≈ 0.28)
than that found in the “ALE” simulation but still very high (this could have been indeed ex-
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FIG. 3.: “ALE” simulation. Left: nonlinear modifications of the energetic ion density profile (the blue
curve refers to the initial profile and the red curve to the simulation relaxed profile; the black curve
corresponds to the experimentally inferred profile just after the ALE and is plotted here for comparison).
Centre: fluctuating poloidal magnetic field B̃θ vs. t (at a radial position close to plasma boundary).
Right: the power spectrum of the same quantity in the plane (t, ω).
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pected observing that, in the region where the linear mode is driven, magnitudes of the initial
radial gradient of the energetic-ion pressure in the two simulations are not very different from
each other: see Fig. 3. left and compare the blue and black curves). Correspondingly, in spite of
fairly little nonlinear effects on the spatial energetic-ion distribution (Fig. 4. left), we get quite
large fluctuating field levels (Fig. 4. right): approximately half of the values found in the “ALE”
simulation, to be compared with the experimental observation of the fast FS-to-ALE amplitude
ratio (∼ 0.2). This seems to be inconsistent with the observed periodic character of the ALEs.
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FIG. 4.: “After ALE” simulation. Left: nonlinear modifications of the energetic ion density profile (blue
curve refers to the initial profile, red curve to the simulation relaxed profile). Right: fluctuating poloidal
magnetic field B̃θ vs. t (at a radial position close to plasma boundary).

Indeed, with such a level of instability, even a partial reconstruction of the spatial energetic-ion
density profile would generate a fast instability, which would essentially clamp the energetic-ion
density profile to the “after-ALE” shape. This is confirmed by a third simulation (”intermedi-
ate”), characterized by an intermediate initial energetic-ion density profile (namely, the average
between the two initial profiles adopted in the “ALE” and “after-ALE” simulations): the final
profile is substantially coincident with that found at the end of the two previous cases (Fig. 5.).
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FIG. 5.: Nonlinear modifications of the energetic ion density profile obtained in the ”intermediate”
simulation. The blue curve refers to the initial profile (an average between the initial profiles adopted
in the “ALE” and “after-ALE” simulations). The red curve represents the relaxed profile obtained after
the mode saturation.

The reason for the detected disagreement could be traced back to the fact that, in assuming a
SD for the initial distribution function in the “after-ALE” simulation, we have retained only
part of the ALE nonlinear effects (the spatial redistribution), with no attention to the distortion
produced in the velocity space. This assumption is very crude, as it can be observed in Fig. 6.,
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where the plot in the (Ê, α) plane of the SD distribution function (left) and that for the distri-
bution function obtained, in the “ALE” simulation, after the nonlinear saturation of the most
unstable mode (centre) are shown. Both functions refer to the radial position r/a ≈ 0.5, where
that mode is peaked, and are normalized to the energetic-ion density at that radius. We see that
the nonlinear ALE dynamics causes both a spread of the distribution function in the low energy
region and a depletion of its high-energy portion. The net effect is reported in Fig. 6. right,
which shows the plot of the difference between the two normalized functions. Note that the
modifications due to the ALE effects appear to be a redistribution in the velocity space. This
is due to considering the normalized distribution functions (depurated from the density factor).
Regions with negative (positive) difference have then to be considered, in an absolute sense,
regions where the depletion of the distribution function is larger (smaller) than that in density.
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FIG. 6.: Plot in the energetic-ion (Ê, α) plane of the slowing-down distribution function (left) and
that for the distribution function obtained, in the “ALE” simulation, after the nonlinear saturation of the
most unstable mode (centre). Both functions refer to the radial position r/a ≈ 0.5, where that mode is
peaked, and are normalized to the local energetic ion density. Right: plot of the difference between the
two normalized functions.

On the basis of this result, we have to seriously question the relevance of the “after-ALE” sim-
ulation: we can expect that the observed distortions of the distribution function significantly
affect the mode-particle resonant interactions and, in turn, the stability of the system. In princi-
ple, the fact that the distribution function is distorted does not imply by itself that the energetic
ions are less effective in driving the mode unstable. Indeed, the displacement of energetic ions
in the velocity space could even allow them to resonate with the mode in a more efficient way.
We can get a reasonable guess on the overall effect on the plasma stability by weighting the
difference shown in Fig. 6. right by the power transfer plotted in Fig. 2.. The resulting contour
plots are reported in Fig. 7., showing that the net effect is largely negative. According to this
result, the velocity-space redistribution of energetic ions corresponds to scattering of resonant
ions out of the resonant region yielding weaker instability. Note however that both consider-
ing the (Ê, α) structure of the resonance obtained in the linear phase of the “ALE” simulation
(before the nonlinear displacement takes place) and looking only at the radial location of the
most unstable mode of that simulation could be misleading. Indeed, we cannot rule out that
both the radial displacement and the velocity-space redistribution modify mode frequency and
structure in such a way to make the displaced ions more effective in driving the mode itself.
In this sense, the previous argument is based only on a purely “local” picture of the nonlinear
mode dynamics.

To get a conclusive response, we have to resort to a further self-consistent numerical experiment
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FIG. 7.: Plot in the energetic-ion (Ê, α) plane of the difference shown in Fig. 6. right weighted by the
power transfer plotted in Fig. 2..

(“after ALE modified”): we initialize the energetic-ion distribution function according to the
distribution function obtained from the “ALE” simulation, after the rapid dynamics of the event
has taken place (tωA0 ≈ 500, see Fig. 3. centre); in such a way, we retain both the radial profile
broadening and the distortions of the distribution function in the velocity space. Figure 8. left
shows the normalized amplitude of the fluctuating poloidal magnetic field close to the plasma
edge for the “after ALE modified” simulation. The fluctuation level is close to the experimental
observations (∼ 0.2 the level found in the “ALE” simulation). Moreover, the characteristic time
scale of the mode becomes longer, as expected, with the power spectrum traces bifurcating in
two branches, chirping up and down in frequency (Fig. 8. right): the frequency sweeping of the
weaker fluctuation supports its identification with a fast FS mode.
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FIG. 8.: “After ALE modified” simulation. Left: fluctuating poloidal magnetic field B̃θ vs. t (at a radial
position close to plasma boundary). Right: the power spectrum of the same quantity in the plane (t, ω).
Note that the two quantities have been reported in the same scales adopted in Fig. 3. centre and right,
respectively.

On the basis of these results, a possible interpretation of the experimental observations is the
following: given the energetic-ion source provided by the beam injection, the free energy re-
construction rate is set by the need of rebuilding the velocity space distribution function. In
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this way, the intermediate configurations between two successive ALEs are characterized by
a lower drive than that of a SD distribution with the same energetic-ion density radial profile.
Low growth rates and amplitude modes, such as the fast FS modes, are then excited and have
a weaker effect than that of ALEs in contrasting the density profile reconstruction. As soon as
the combined restoration of the configuration and velocity space distribution provides enough
drive for a fast growing Alfvén mode, a new ALE occurs.
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