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Abstract. The following results are presented from the development and application of
TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-
plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST
is compared with published analytic and numerical results for endloss of particles confined
by combined electrostatic and magnetic wells. Good agreement is found over a wide range
of collisionality, confining potential, and mirror ratio; and the required velocity space reso-
lution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found
for a neoclassical equilibrium with parallel ion flow in the banana regime with zero tem-
perature gradient. (3) The four dimensional (2d2v) version of the code produces the first
self-consistent simulation results of collisionless damping of geodesic acoustic modes and
zonal flow (Ronsenbluth-Hinton residual) with Boltzmann electrons using a full-f code. In
divertor geometry, it is found that the endloss of particles and energy induces pedestal-like
density and temperature profiles inside the magnetic separatrix and parallel flow stronger
than the core neoclassical predictions in the SOL. (4) Our 5D gyrokinetic formulation yields
a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and tur-
bulence simulations.

1. Introduction

Understanding the structure of edge transport barrier in high-performance (H-mode) dis-
charges requires a kinetic description of the plasmas because the radial width of the pedestal
observed in experiments is comparable to the radial width of individual ion orbits (leading to
large distortion of the local distribution function from a Maxwellian), while the ion and elec-
tron mean-free-paths are long compared to the connection length in the hot plasma at the top
of the edge pedestal (violating the assumptions underlying a collisional fluid mode). Gyroki-
netic formulation (2v) [1] is a reasonable approximation for edge plasmas because much
pedestal physics is typically low frequency phenomenon compared to ion gyro-frequency.
But existing gyrokinetic theories and codes do not apply to edge plasmas because they can-
not treat fully nonlinear electromagnetic perturbations with multi-scale-length structures in
space-time for full divertor geometry.

1This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48 at LLNL, Grant No. DE-FG02-
04ER54739 at UCSD, Grants DE-FG03-95ER54309 at general Atomics, and DE-AC02-76CHO3073 at PPPL.
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We report on the development and application of TEMPEST, a fully nonlinear (full-f) gyroki-
netic code, to simulate H-mode edge plasmas. This 5-dimensional (ψ, θ, ζ, E0, µ) continuum
code represents velocity space via a grid in equilibrium energy (E0) and magnetic moment
(µ) variables, and configuration space via a grid in poloidal magnetic flux (ψ), poloidal
angle (θ) and toroidal angle (ζ). The geometry is that of a fully diverted tokamak and so
includes boundary conditions for both closed magnetic flux surfaces and open field lines.
A set of gyrokinetic equations [2, 3] are discretized on a computational grid for both cir-
cular and divertor geometry with a magnetic separatrix. The equations are solved via a
Method-of-Lines approach and an implicit backward-differencing scheme using a Newton-
Krylov iteration advances the system in time [4]. The spatial derivatives are discretized
with finite differences while a high-order finite volume method is used in velocity space
(E0, µ). A fourth-order upwinding algorithm is used for parallel streaming; and a fifth-order
WENO scheme [5] is used for particle cross-field drifts. Boundary conditions at conduct-
ing material surfaces are implemented on the plasma side of the sheath. The code includes
kinetic or Boltzmann electrons. A nonlinear Fokker-Planck collision operator (CQL) from
STELLA [6] has been extracted and integrated into the gyrokinetic simulation code using the
same implicit Newton-Krylov solver. A new Fokker-Planck collision operator in (E0, µ) space
is under development for improved accuracy and conservation properties. The gyrokinetic
Poisson equation is solved using GMRES with a multi-grid preconditioner.

2. Basic Gyrokinetic Equation

A set of generalized gyrokinetic Vlasov-Maxwell equations in the gyrocenter coordinate
system valid for edge-plasma conditions has been derived by the Lie transform perturba-
tion method to the Poincaré-Cartan-Einstein 1-form and the pullback transformation for
the distribution function [2]. This formalism allows inclusion of nonlinear large-amplitude,
time-dependent background electromagnetic fields in addition to small-amplitude, short-
wavelength electromagnetic perturbations. As an example, the pullback transformation in
the gyrokinetic Poisson equation is explicitly expressed in terms of moments of the gyrocen-
ter distribution function, thus describing the important gyro-orbit squeezing effect due to
the large electric field shearing in the edge and the full finite Larmour radius effect for short
wavelength fluctuations. The familiar polarization drift density in the gyrocenter Poisson
equation is replaced by a more general expression.

2.1 Fully Nonlinear Ion Gyrokinetic Equations

The ion gyro-kinetic equations presently implemented in TEMPEST for the time-dependent
five-dimensional (5D) distribution functions are simplified from our recent new formula-
tion [2] and earlier Hahm’s work [3]. Due to the large potential and its multiple spatial-time
scale nature in the edge pedestal, in order to accurately simulate particle parallel streaming,
the field Φ is split into two parts Φ = Φ0 + δφ: Φ0 is the large amplitude, slowly varying
component; δφ is the small amplitude, rapidly varying component. Here E0 is defined as the
total energy including Φ0, but not δφ. Then E0 is a constant of motion if δφ ∼ 0 and a coor-
dinate aligned with the direction of phase-space flow. The kinetic equation for the gyrocenter
distribution function Fα(x̄, µ̄, Ē0, t) in gyrocenter coordinates (x̄ = x−ρα, ρα = b×v/Ωcα),
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“total energy” Ē0, and magnetic moment µ̄, has the form:
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〈δφ〉 = 〈Φ〉 − 〈Φ0〉. (6)

Here Zαe, Mα are the electric charge and mass of electrons (α = e), ions (α = i). µ is the
guiding center magnetic moment. The left-hand side of Eq. (1) describes the particle motion
in the electric field and magnetic field. Cα is the Coulomb collision operator. The over-bar
is used for the gyrocenter variables and 〈 〉 denotes the gyroangle averaging. The additional
E0 × B flow terms due to the large amplitude and the slow variation Φ0 from the complete
formulation [2] will be added.

2.2 Fully Nonlinear Gyrokinetic Poisson equation

The complete gyrokinetic Poisson equation has been derived [2], including orbit squeezing
by large Er shearing and full FLR effect. To make it numerically attractive, two additional
approximations are made here: (1). the spatial variation of the transverse µ̄ moments Mn(x̄)
calculated from Fα(x̄, µ̄, Ē0, t) is much slower than that of potential in evaluation of the full
FLR effect; (2). the total transverse distribution function is Maxwellian.

2.2.1 Fully Nonlinear Gyro-kinetic Poisson equation in the arbitrary wave-
length regime

In the arbitrary wavelength regime, the self-consistent electrostatic potential is computed
from the gyro-kinetic Poisson equation:

0 = −4πe

[∑
α

ZαNα(x, t)− ne(x, t)
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−
∑
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where Γ0(b) = I0(b)e
−b, b = ρ2

α∇2
⊥/2, I0(b) is the usual zeroth-order modified Bessel function.

The ion gyroradius is ρα =
√

2T⊥α/Mα/Ωα, the ion gyrofrequency is Ωα = ZαeB/Mαc, and

the ion Debye length is λ2
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2
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2. Although Eq. (7) is similar to the usual gyro-
kinetic Poisson equation [3], there is an important distinction. Our gyro-kinetic Poisson
equation is fully nonlinear and the gyrocenter center density Nα and perpendicular ion
pressure p⊥α are calculated from the gyrocenter distribution function Fα(x̄, µ̄, Ē0, t).
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me
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p⊥α = πB
∫
dv‖dµ̄(v2

⊥Fα), T⊥α =
p⊥α

Nα(x, t)
(9)

Here the dot product between the density and potential as well as the Debye shielding have
been dropped for simplicity.

The first-order Padé approximation to Γ0 with Γ0 − 1 = b/(1 + b) is an excellent fit for
0 ≤ b ≤ 9, and is therefore valid well into the typical ion gyrokinetic regime as used previously
in gyro-kinetic or gyro-fluid simulations [7, 8]. For single ion species, substituting a simple
functional transformation Φ = φL + [T⊥α/(NαZ

2
αe)] [ZαNα(x, t)− ne(x, t)] and the Padé

approximation into Eq. (7) yields

ρ2
α

2
∇2
⊥φL = − Tα

NαZ2
αe

[
1 +

ρ2
α

2
∇2
⊥ ln

(
T⊥α
Nα

)]
[ZαNα(x, t)− ne(x, t)] . (10)

where φL is obtained by the gyrokinetic Poisson solver.

2.2.2 Fully Nonlinear Gyro-kinetic Poisson equation in the long wavelength
regime

In the long wavelength limit k⊥ρα � 1, the self-consistent electric field is typically computed
from the gyrokinetic Poisson equation for multiple species(∑
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Dα = T⊥α/4πnαZ

2
αe
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There are two important distinctions between Eq. (11) and the usual gyro-kinetic Poisson
equation [3]. Our gyro-kinetic Poisson equation is fully nonlinear and the gyrocenter center
density Nα and perpendicular ion pressure p⊥α are calculated from the gyrocenter distri-
bution function Fα(x̄, µ̄, Ē0, t), as defined in Eqs. (8)-(9). The last term of Eq. (11) is the
diamagnetic density from the long wavelength expansion of the gyroaveraged gyrocenter
density Nα(x, t). Although the diamagnetic density is small compared to the ion gyrocenter
density, it is of the same order as both the polarization density in high-beta plasmas and as
the difference between ion and electron gyrocenter density! This equation is an extension of
typical neoclassical electric field calculation including poloidal variation.

2.3 Boundary conditions

2.3.1 Radial boundary conditions

The radial Robin boundary conditions are used for Fα and potential δφ at the inner core
surface ψ = ψc and the outer wall surface ψ = ψw. This is a generalization of the Dirichlet and
Neumann boundary conditions. Since the gyrokinetic equation has just a first-order radial
advection term, there is only one physical boundary condition, depending on the direction
of convection, No boundary condition should be imposed for particles convecting out of the
simulation domain and therefore a extrapolation is used at that boundary.
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2.3.2 Poloidal boundary conditions

The boundary conditions in the θ direction for Fα and for Φ are the sheath boundary
conditions at the divertor plates and periodic in the “core” (closed field-lines). Our present
implementation for sheath boundary conditions is for the case of normal intersection of the
flux surface with the walls, where the ions are not confined for the perfectly absorbing wall
and the current through the sheath is zero with no biasing; and there is an energetic group of
impinging electrons that can escape the sheath potential and reach the wall with the energy
E0 + eδφsh − µB > 0. Here Φsh = Φ0sh + δφsh is the sheath potential.

i. Sheath boundary conditions for potential

If the gyrokinetic ion and fluid electron model are used, the sheath potential is determined
by the quasi-neutrality condition:

Φsh =
Te
e

ln

 4Γi,sh

ne,shζ
√

8Te,sh/πme

 ,Γi,sh =
2πB

M2
α

∫ ∞
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0
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|v‖|
v‖F

σ
i .(12)

The σ = ± represents the plus and minus sheet of parallel velocity with F σ
i 6= 0 for only

incoming sheet. Here it is assumed that impinging electrons have a Maxwellian distribution.
The factor ζ ≡ 1/(1+τp/τe) includes the correction of electron long mean-free paths physics.
τp is long mean-free path confinement time and τc is the confinement time for the collisional
sheath limited case. ζ ≡ 1 if the electrons are in the short mean-free paths regime.

If both electron and ion are kinetic, the sheath potential is determined:
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ii. Sheath boundary conditions for distribution functions

If the gyrokinetic ion and fluid electron model is used, the ion distribution function is:

Fα(ψ, θ, E0, µ) =

{
Fα(ψ, θ, E0, µ), v‖ ≥ 0

0, v‖ ≤ 0
(15)

A convention regarding the sign of the parallel velocity is that it is positive when there is a
positive projection on the θ axis. Here positive θ axis is pointing to the plate/wall.

If both electron and ion are kinetic, the electron distribution function is:

fe(ψ, θ, E0, µ, σ = 1) = fe(ψ, θ, E0, µ, σ = 1), (16)

fe(ψ, θ, E0, µ, σ = −1) =

{
fe(ψ, θ, E0, µ, σ = 1), |v‖| ≤ vSH

0, |v‖| ≥ vSH
(17)

Here vsh =
√

2eΦsh/me.
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3. TEMPEST simulation Results

TEMPEST has been developed in the modern framework for either circular or divertor
geometry. With importance of benchmark in mind, both full-f or δf options are available.
TEMPEST is runnable as (1) 3D for the SOL endloss with F (θ, E0, µ), (2) 4D for transport
F (ψ, θ, E0, µ), and (3) 5D for turbulence F (ψ, θ, ζ, E0, µ). The different aspects of the 3D,
4D and 5D TEMPEST have been verified on various known physics problems, such as (1)
collisional scattering into a velocity-space loss cone, (2). neoclassical flow and transport,
(3). electric field generation and geodesic acoustic mode damping, (4). drift waves and ion
temperature gradient (ITG) modes.

3.1 3D Pastukhov collisional endloss

As a test of collisional velocity-space transport and parallel streaming, 3D TEMPEST (1d2v)
simulation results are compared with published analytic and numerical results as shown in
Fig. 1 for the endloss of particles confined by combined electrostatic and magnetic wells [9,
10, 11]. Here electrostatic and magnetic field are uniform with abrupt confining magnetic field
and potential barriers at wall. Good agreement is found over a wide range of collisionality,
confining potential, and mirror ratio; and the required velocity-space resolution is modest.
In these simulations, the linearized CQL package is used.

a) b) c)

FIG. 1: Collisional endloss (“Pastukohov”) test cases: (a) confinement time versus density; (b)
confinement time versus potential eφ/Te at low collisionality; (c) confinement versus mirror ratio
at low collisionality.

3.2 4D Neoclassical tests

If using a shifted Maxwellian distribution that analytically satisfies Eq. (1) as an initial
condition, then TEMPEST should preserve the solution without any significant change
(within our finite difference truncation accuracy) after running some time steps. We tested
such a case using the following simulation parameters: inverse aspect ratio ε = a/R0 =
0.03, the major radius R0 = 17.1 meter, toroidal magnetic field Bt = 1.5T , and poloidal
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magnetic field Bp = 0.2T . The ion density and temperature profiles used are ni(ψ) =
Nix exp(− ln(Nix/Nio)ψ/Lψ), Ti(ψ) = Tix exp(− ln(Tix/Tio)ψ/Lψ). with Tix = 3keV, Tio =
0.95Tix, Nix = 1 × 1020m−3, and Nio = 0.95Nix. The mesh resolutions are nψ = 30, nθ =
50, nE = 60, and nµ = 30. In the simulations Φ is set to be zero for simplicity. As shown in
Fig. 2a), the simulation results remain in good agreement with theoretical prediction even
after 10000 time steps ( 50 thermal ion transit time). The solid line in plot of q‖i comes
from theoretical prediction for a shifted Maxwellian distribution, q‖α = 2.5NαU‖αTα, and

U‖α = − I
Ωα

Tα

Mα

(
∂ lnNα

∂ψ

)
.

In divertor geometry, for a given particle and heat sources on the inner core boundary surface,
because the parallel transport is much larger than neoclassical radial transport, it is found
that the endloss of particles and energy (discussed in section 2.3) induces (1) pedestal-like
density and temperature profiles inside the magnetic separatrix; (2) parallel flow stronger
than core neoclassical predictions in the SOL as indicated in Fig. 2 (b); (3) a symmetry
point is developed for the parallel heat flux on the top of the machine as expected as shown
in Fig. 2(c).
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FIG. 2: (a) Comparison between simulation results with theory for a collisionless case with ∇Ti = 0
and zero finite banana orbit width. Flux surface averaged parallel heat flux 〈q‖i〉. The solid lines
comes theory and other lines from different time; (b) Comparison of simulation results with theory
for flux surface averaged parallel flow velocity 〈U‖i〉 in the banana regime with ν∗i ' 0.02, ∇Ti = 0
and finite banana orbit width in X-point divertor geometry. The average is done by integration
along the field-line from inner plate to outer plate in the SOL. (c) The contours of parallel heat
flux q‖(R,Z) in the divertor geometry.

3.3 4D Geodesic-Acoustic Modes

The Geodesic-Acoustic Mode (GAM) is an asymmetric mode, which involves parallel ion
dynamics, cross field drifts, and acceleration. Earlier GAM theory and simulations focused
on large aspect ratio and small orbit [12, 13]. Recently Sugama and Watanabe find that the
damping rate is sensitive to k⊥ρi at large q due to the effect of large banana orbit [14]. In our
4D GAM simulations, the charge is radially separated by an initial sinusoidal perturbation on



8 TH/P6-23

ion density. The electron model is Boltzmann ne = 〈ni(ψ, θ, t = 0)〉 exp(eφ/Te)/〈exp(eφ/Te)〉,
where 〈〉 represents the flux surface average. This choice of coefficient for Boltzmann electron
model means that there is no cross field electron transport. Both radial and poloidal bound-
ary conditions are periodic. The first full-f, self-consistent simulation results of collisionless
damping of geodesic acoustic modes and zonal flow are plotted in Fig. 3. Good agreement
is shown between theory [14] and simulations for the frequency of GAMs in Fig. 3a) and
damping rate in Fig. 3b). The 30% difference between theory and simulation is attributed
to the fact that the theory uses an asympototic 1/q2 expansion for large q, while in our
simulation q=2.2 is moderate. The large effect of the orbit size on the GAM damping rate
is illustrated in Fig. 3c). For the same parameters, the damping rate is almost zero if the
finite banana orbit effect is ignored.
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FIG. 3: (a) Time evolution of the zonal-GAM potential shows GAM oscillation, collisionless damp-
ing, and residual for a large-aspect-ratio circular geometry with q = 2.2 and ε = 0.02 with three
different velocity resolutions; (b) Comparison of simulation results with theory for GAM damping
rate with three different velocity resolutions in finite banana orbit regime; (c) GAM damping rate vs
q with finite banana orbit effect (yellow) and without finite banana orbit effect (black) from Sugama
and Watanabe theory [14].

3.4 5D Drift waves and ITG modes

Conventional orderings are different for 4D neoclassical transport and 5D (ψ, θ, ζ, E0, µ)
turbulence where ζ as the binormal coordinate. Our 5D gyrokinetic formulation yields a
set of nonlinear electrostatic gyrokinetic equations that are valid for both neoclassical and
turbulence simulations. In particular, the field solver for shear/zonal flow is different from
that for turbulence due to: (1) the strong poloidal variation of the electrostatic potential in
the divertor X-point geometry originating from different boundary conditions in the core,
the SOL and private-flux regions; (2) additional terms are promoted by the edge ordering
of a large background E×B flow uE ' vTi. 5D tempest uses field-aligned coordinates with
4th-order interpolation and ζ-index shifting for twist-shifted parallel boundary condition in
the core inside the separatrix and radial difference in the usual flux coordinates to minimize
the cell distortion in field-aligned coordinates due to magnetic shear. 5D TEMPEST shows
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a good agreement for drift wave frequency between theory and simulations with 10% radial
variation of ion density profile and the flat ion temperature profile. For a different simulation
setup with 10% radial variation of ion temperature profile and the flat ion density profile, 5D
Tempest also shows ITG mode. Benchmarks with theory and other codes are under progress.

4. Summary and conclusions

Recently developed full-f, 5D continuum edge-plasma code TEMPEST utilizes high-order
spatial differencing and high-order finite-volume scheme for velocity space to accurately
simulate particle convection and Coulomb collisions. TEMEST runs both in full divertor
geometry for the important edge kinetic physics and in a circular geometry for benchmarking
with analytical theories and other existing core gyrokinetic turbulence codes. TEMPEST
demonstrates expected physics results in 3D, 4D and 5D verification tests. The further
improvement and development of TEMPEST will yield a valuable predictive model for the
edge pedestal. This work is focused on a fundamental understanding of relevant physics
from first-principles theory and simulations and should greatly increase our confidence in
predictions of ITER edge-plasma performance.
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