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Abstract. A numerical modeling for the dynamics of an edge-localized mode(ELM) crash in the spherical toka-
mak is proposed with a consecutive scenario which is initiated by the spontaneous growth of the ballooning 
mode instability by means of a three-dimensional nonlinear magnetohydrodynamic simulation. The simulation 
result shows a two-step relaxation process which is induced by the intermediate-n ballooning instability fol-
lowed by the m/n=1/1 internal kink mode, where m and n represent the poloidal and toroidal mode numbers, re-
spectively. By comparing with the experimental observations, we have found that the simulation result can re-
produce several characteristic features of the so-called type-I ELM in an appropriate time scale:(1)relation to the 
ballooning instability, (2)intermediate-n precursors, (3)low-n structure on the crash, (4)formation and separation 
of the filament, and (5)considerable amount of loss of plasma. Furthermore, the model is verified by examining 
the effect of diamagnetic stabilization and comparing the nonlinear behavior with that of the peeling modes. The 
ion diamagnetic drift terms are found to stabilize some specific components linearly; nevertheless they are not 
so effective in the nonlinear dynamics such as the filament formation and the amount of loss. For the peeling 
mode case, no prominent filament structure is formed in contrast to the ballooning case. 

1. Introduction

The edge-localized mode(ELM) is a repetitious instability which is often observed in the ped-
estal region of the H-mode operations of toroidal devices. Although ELMs are slightly harm-
ful to the edge confinement, they also play an essential role for impurity control to sustain the 
H-mode state. Therefore, to control the ELMs is one of the most important issues for the ad-
vanced operations of toroidal plasmas. In recent spherical tokamak(ST) experiments, as well 
as conventional large tokamaks, several "types" of the ELMs are also observed as the confine-
ment properties and the measurement environment developed. Not only the most commonly 
observed type-I ELM, which has larger fluctuation level than other types of ELM, but also 
several kinds of small ELMs are observed. Some of them have unique characteristics to the ST 
devices. Moreover, the geometrical compactness of the ST configuration has been helpful in 
understanding the global structure of ELMs. Especially, detailed filamentary structures on the 
plasma surface are clearly observed in the MAST[1] and NSTX[2]. 

Numerous linear stability analyses have shown that the onset of the observed type-I ELMs 
can be well explained by the peeling-ballooning mode instabilities[3]. Namely, the large pres-
sure gradient in the pedestal region can drive the ideal ballooning modes, and the large edge 
bootstrap current due to the steep density gradient on the edge can destabilize the external 
kink modes, i. e., the peeling modes. The experimental evidences that there is a close relation 
between the operation regime and the stability limits of those modes support the model that 
ELMs are excited by the combination of both modes. 

                                                 
1Prof. T. Hayashi regrettably passed away during this work on April 13, 2006.
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On the other hand, the physical models for the nonlinear behavior of the ELMs are insuffi-
cient at present. Experimentally, several prominent filamentary structures extending helically 
along the magnetic field, the convective loss of plasma, and the post-cursory deformations 
with low-n components are observed in the ELM crash phase. These nonlinear behaviors are 
linked directly to the performance of the H-mode state. 

In this paper, we propose a modeling for the nonlinear dynamics of an ELM crash with a con-
secutive scenario which is initiated by the spontaneous growth of the ballooning mode insta-
bility by means of a magnetohydrodynamic (MHD) simulation. In Sec. 2, the numerical model 
is explained. The overall simulation result is described in Sec. 3. Several considerations to the 
result with the effect of diamagnetic stabilization and the comparison with that of the peeling 
mode are discussed in Sec. 4. The model is summarized in Sec. 5.

2. Simulation Model

The numerical model of the simulation is based on the nonlinear resistive compressive MHD 
equations,
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where ρ, v, B, and p are the density, the flow velocity, the magnetic field, and the pressure, 
respectively. These variables are treated in normalized form, where the Alfven velocity at the 
magnetic axis becomes 1. The current j and the electric field E are determined by

€ 

j =∇ ×B,
E = −v×B +ηj.

                                                      (2)

The resistivity η and the viscosity µ is given as a uniform constant. Φ is the the viscous heat-
ing by which the total energy is locally conserved everywhere. The simulation is executed by 
using a finite-difference / Runge-Kutta method in a full toroidal three-dimensional geometry. 
The system includes the external open field, and a single-null X point. A perfect conducting 
wall located close to the plasma surface limits the boundary condition of the simulation. The 
initial condition is given by a reconstructed equilibrium from the NSTX, where β0=28%, 
q0=0.89, and A=1.4. The system is linearly stable for the ideal modes, but weakly unstable for 
the resistive ballooning mode. This numerical model has been already reported in our previous 
paper[4]. Although no ELM activity is observed in this shot, we adopt these conditions as a 
typical example of a marginally stable ST plasma for the resistive ballooning mode. The den-
sity is set to be uniformly ρ=1, and the vacuum region is treated as a low pressure plasma 
continuously from the core region, for simplicity.
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FIG. 1. (a)Time development of energy for each toroidal mode. (b)Poloidal mode structures for 
the n=12 mode.

3. Overall Scenario of an ELM crash

As reported in Ref.[4], the simulation result shows a two-step relaxation process induced by 
the intermediate-n resistive ballooning mode followed by the m/n=1/1 internal kink mode, 
where m and n are the poloidal and toroidal mode numbers, respectively. Figure 1(a) shows 
the time development of the magnetic energy for each toroidal mode for the case where the 
normalized resistivity η=1x10-5. The simultaneous linear growth of several intermediate-n 
modes can be seen until t=200τA. Shown in Fig.1(b) is the poloidal mode structures of the 
n=12 mode, which clearly shows the typical ballooning nature, where the mode structure is 
highly localized in the low-field side. After the saturation of these modes at t=360τA, only the 
n=1 mode begins to grow again, and ends in the internal kink relaxation. Thus, the simulation 
result has reproduced consecutively both the intermediate-n(~8-12) modes and the single n=1 
deformation. 

FIG. 2. (a)Pressure near the surface at t=10τA, (b)230τA, (c)270τA, and (d)270τA in 3D. 
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At around t=200τA, several numbers of thin and elongated ridges are formed almost along the 
magnetic field lines on the plasma surface. They eventually turn into bubbles isolated from the 
core plasma. Such behavior is shown in Fig.2. Figures 2(a)-(c) show the contour of the pres-
sure in a clipped poloidal plane near the plasma surface, on which a plasmoid is separated 
from the core. This behavior well agrees with the experimental observation in MAST[1]. The 
three-dimensional structure is shown in Fig. 2(d). One can see a floating thin filamentary 
structure and several ridges along the field lines, which are also in good agreement with the 
camera image taken in MAST. Especially, it should be noted that only a few numbers of fila-
ments emerges prominently despite the toroidal mode number of the most dominant linear ei-
genmode is much larger. This fact can be explained by the toroidal mode couplings among 
multiple linear modes which exist close to each other.

The lifted plasmoid can carry part of the plasma out of the torus within itself . Moreover, un-
der such a situation, a kind of magnetic reconnections can be induced by the same mechanism 
as the internal reconnection event in ST[5]. Namely, the plasma on the ridges is pushed 
against the external open magnetic field as the plasmoid grows. Then, strong current sheet 
structures can be formed along the ridges. These current sheet structure with a strong perpen-
dicular plasma flow would drive a forced reconnection between the internal and external mag-
netic fields. The occurrence of the magnetic reconnection in the simulation result can be con-
firmed by tracing the magnetic field lines, which start from an external position. Some of the 
field lines go across the separatrix into the torus. Once such a reconnection occurs, a steep 
pressure gradient is formed abruptly along the reconnected field lines. This parallel pressure 
gradient can be another cause of the fast loss of the plasma. Such parallel plasma flows are 
also observed in the latter stage of the simulation result. 

The poloidal pressure profile changes into a peaked one from a broader one in the central re-
gion due to the convection motions of the ballooning modes. The safety factor profile also 
goes below 1 at the center. These changes can induce another instability after t=360τA, i. e., the 
m/n=1/1 internal kink mode. The system crashes once again due to the 1/1 mode, and then re-
covers to a broader profile, just like the well-known sawtooth crash mechanism. During this 
process, one can see a characteristic non-axisymmetric structure with a large n=1 component, 
which is also clearly observed  in NSTX[2] as a post-cursory deformation on a large ELM.

FIG. 3. The initial condition for the test case. (a) Poloidal flux(contours) and pressure(color). 
(b)Radial pressure(blue), toroidal current(green), and safety factor(red) profiles.
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Thus, our simulation result reproduces several characteristic features of a so-called type-I 
ELM in STs:(1)relation to the ballooning instability (2)intermediate-n precursors (3)low-n 
post-cursor (4)formation and separation of the filamentary structures (5)considerable amount 
of convective loss. As for the time scale, the simulation result is consistent with the experi-
mental ELM rise times of the order of ~100 µsec.

4.  Discussion

4.1. Comparison between the Peeling and Ballooning Modes

As described in Sec.1, the ELMs are thought to be induced by not only the ballooning mode, 
but also the combination of  the peeling mode. Especially, the smaller types of ELMs may 
have much relation to the peeling instability[6]. We have demonstrated in Sec.3 that the char-
acteristic features of the type-I ELM can successfully reproduced with the nonlinear time de-
velopment of a ballooning mode. In this section, we examine the nonlinear behavior driven by 
the peeling mode instabilities. To deal with the peeling modes,  we compose another set of the 
initial and the boundary conditions with a numerical equilibrium which is obtained by solving 
the Grad-Shafranov equation under certain assumption for the pressure and the current pro-
files. To model the increased edge current, we assume polynomial functions for both the pres-
sure and the current, in which the current is increased in the region where the pressure gradient 
becomes steep. Moreover, the configurations have the double-null separatrix and the far-off 
conducting boundaries to treat the external modes consistently, and the triangularity to sup-
press the unfavorable ballooning modes. By using a free-boundary Grad-Shafranov code, we 
have obtained such an ST equilibrium, as shown in Fig. 3. The poloidal flux is shown in Fig. 
3(a), together with the pressure contours. The radial profiles are plotted in Fig. 3(b), where 
the pressure is broad, the current is highly hollow, and the safety factor is deeply negative-
sheared. The parameters for this equilibrium are β0=25%, qmin=1.27, and A=2.0.

FIG. 4. (a)Linear eigenfunction for the n=7 peeling mode with the perturbations in pressure. 
(b)Poloidal expansion of magnetic energy for (a). (c)(d) Same as (a)(b) but for the n=10 bal-
looning mode.
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FIG. 5. (a) poloidal flow pattern of the peeling mode. (b) Same as (a) but for the ballooning 
mode. (c)3D structure of pressure for the peeling mode. (d) Pressure in the poloidal cross section.

The initial equilibrium is linearly unstable for some toroidal Fourier components within the 
ideal regime, in which the resistivity is small enough (η<10-7). The most dominant one is the  
m/n=9/7 component, which is excited near the minimum-q surface. The poloidal mode struc-
tures are shown in Fig. 4(a) and (b). One can see that the mode shows typical characteristics 
of the peeling mode in that the mode structures are not poloidally localized and are extending 
toward the edge without significant poloidal mode couplings. Further analysis for the poten-
tial energy by using the energy principle shows a dominance of the current driven term, which 
supports the insight. On the other hand, with a larger resistivity η=4x10-5, the system be-
comes more unstable for the resistive ballooning mode, as well as the case described in Sec. 3. 
The mode structures of the most dominant n=10 component are shown in Fig. 4(c) and (d). 
The structure shows typical ballooning nature as described in Sec. 3, in contrast to Fig. 4(a) 
and (b). Thus, we have obtained a pair of test cases of the peeling and the ballooning modes. 

The nonlinear behavior is firstly directed by the plasma flow structures of the linear eigen-
functions. For the ballooning mode, the filamentary structure is formed by a radial convection 
motion in the edge of the low-field side, as described in Sec. 3. One can clearly see such poloi-
dal flow patterns in the early nonlinear stage of the test case of the ballooning mode, shown in 
Fig.5(b). For the peeling case, on the other hand, the vortices become poloidally, and also tor-
oidally, elongated near the surface, as shown in Fig. 5(a). Namely, the radial component is not 
so large that no prominent filamentary structure can form in the nonlinear stage. In stead of 
the filaments, the outermost layer of the plasma is "peeled" with a certain width, as shown in 
Fig. 5(c) and (d). This behavior of the peeling mode may induce a milder loss of plasma, which 
would be related to the smaller types of the ELM.

4.2. Diamagnetic Stabilization of some Linear Modes 

We have also executed the drift model simulation to follow the dynamics under more realistic 
situations. According to the Hazeltine and Meiss model[7], we introduce the flow velocity 
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variable as the sum of the conventional MHD velocity and the ion diamagnetic drift veloc-

ity(

€ 

vp =
m
2e
B×∇p
ρB2

). The electron dynamics and the density gradient are neglected for sim-

plicity. The result shows that the mode structures rotate both toroidally and poloidally with 
vp~0.01vA. Under the realistic parameters, the effect of the diamagnetic modification is small 
enough not to change the linear growth rate, as shown in Fig. 6(α=1). However, if we use 
twice large value for vp(α=2), which corresponds to the case with a smaller device dimension, 
the lower-n modes are linearly stabilized, whereas the higher-n modes remain unstable. It can 
be thought that the velocity shear formed by the diamagnetic effect suppresses the growth of 
the low-n modes. The nonlinear dynamics, on the other hand, is not so affected by those 
modifications, since the nonlinear dynamics is dominated by the higher-n components in this 
case.

FIG. 6. Growth rate for each toroidal mode. α indicates the factor for the diamagnetic effect.

The diamagnetic stabilization effect may be sensitive to the profile, especially, the pressure 
gradient in the unstable region. More systematic scans for the diamagnetic effect in the 
broader core and steeper edge profile have been carried out with a simpler model, where only 
the diamagnetic rotation term is included in the advection term of the momentum equation as 
the  lowest order modification[8]. The result again shows the less effect of the diamagnetic 
term with a realistic parameter. In this case, the stabilizing effect is observed in the higher-n 
components with some increased value for vp, mainly because the velocity shear exists only in 
the edge region. Therefore, the dominant toroidal mode number of the linear growth is shifted 
lower as the stabilization effect becomes larger. However, in the nonlinear stage, it should be 
noted that only a few filaments are universally formed in any case  due to the toroidal mode 
couplings. Thus, our model is found to be sound against the diamagnetic stabilization effect.

5. Concluding Remarks

In this paper we have demonstrated the dynamics of ST plasma on a pulse of the ELM crash 
by means of a three-dimensional nonlinear simulation. A modeling for the filament formation 
on an ELM crash based on the nonlinear development of a ballooning mode was proposed. A 
consecutive scenario was obtained including the stages from the precursory intermediate-n 
ballooning mode to the post-cursory n=1 deformation through the formation of a few filamen-
tary structures. The impact on the result with the different driving source of the linear mode 
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and the diamagnetic stabilization was examined. It has turned out that the ballooning nature is 
essential for the formation mechanism of the observed filamentary structure. Our numerical 
modeling with the global geometry which include the separatrix and the core region have re-
vealed several unknown features such as the loss mechanism through the magnetic reconnec-
tion between the internal and external field, and the multi-step relaxation ranging over whole 
region of the torus. Quantitative analyses with more realistic configurations and the inclusion 
of the transport physics into the model are our future works. 
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