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Since Stringer [1] had shown that any radial location in tokamak plasmais prone to a
spontaneous poloidal spin-up with a concomitant rise of aradial electric field, plasma rotation
and radial electric field gradually emerged as important factorsin stability considerations for
toroidal equilibrium and transport. As novel studies indicate, also tokamak turbulence
instability due to the geodesic acoustic mode (GAM) or zonal flow have similar mechanisms
involving perturbations of the plasma rotation velocities and the radial electric field [2-4].

On the other hand, as plasma collisionality suppresses such instabilities, it is less likely to
encounter rotational turbulence, for example, in high collisional plasmas with steep gradients.
In the present extension of the neoclassical theory of rotation and electric field in high
collisionality tokamak plasmas with steep gradients [5-6], however, it will be shown that in
some radial interval the poloidal (and to some extent also toroidal) rotation velocity displays
chaotic behaviour.

1. Basic Equations

Using the notations of former publications [5-6], the governing equations for the described
regime are, continuity equation for the ions,

N, +3% (hh,T)=S" -J%,(h,hT,) (1)
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where T, =N,U, and S" aretheion flux and ion particle source, respectively, and
momentum balance equation summed over both species:
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Here 1, isthe viscosity tensor including M, , F,_,,; .M., contributions as defined in

Refs. [5-8]. Using a scaling relevant to the tokamak edge, e~Bo/By~ (qRvy/cy)™ ~Ly/r ~r/(gR),
and by taking the toroidal projection of (2) and averaging over aflux surface, one finally gets
the toroidal momentum equation for plasma with circular cross sections
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where Z isthe poloidal angle dependent part of Z=S" —J‘law(hwhxrw’i) which may lead

to the Stringer spin-up for a suitable 6 dependence of the source and

Q=[4B,U,, —25(T, /€)0InN, T, /or]B™ and S= (2rx N, ") /(4°R?) , where the parallel

heat diffusion coefficient is X); =3.9R /m.v. . Likewise, one can obtain the neoclassical

ambipolarity equation as [5-6]
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Above sytem (3-4) represents atwo-time-scales problem, namely, it depends on a fast time
variable t=t/e, as well as a macroscopic timet. A solution procedure for this problem was
suggested in Ref. [9] specializing r to aboundary layer inside the magnetic separatrix by
E=(r-r9)/L. A smooth temperature profile model that depends on parameters p, Td/Ts, A,
simulating a steep gradient before the separatrix is taken with this system.

2. Steady State Equations

Now, we look for the equilibrium solutions of Eq.(3) and Eq.(4) for Uy, and Ug; , using their
lowest order expansions and time independent forms. These can be written as

dU,;

de = F(U¢,i yUg; &) ©)
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For the neutral beam injection, one could also include aterm like m;N;m, ; to the left hand

side of Eq.(6). Here, thisterm is dropped for simplicity. Substituting Eq.(5) in Eq.(6), we
obtain
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where the derivative w.r.t. & is denoted by a prime. Functions F and G in Egs. (5-6) can be
written, after normalizing at the separatrix, as
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A possible radial current is denoted here by A. Theterm K, representing charge exchange
effects, istaken in the calculations for smplicity as a constant. In Eq.(7) the individual terms
indicating partial derivatives of F and G will not be given here asthey are lengthy. To this
system of two first order nonlinear ordinary differential equations, Egs.(5,7), an equation for
the temperature variation along & must also be added. This will be taken now simply asa
monotonic function of the minor radius, in which we can adjust the steepness of the profile by
aparameter p:

TE) = 1T{l— tanh(a + EH , Where a= tanh'l(l— 25] : 9)
2 M T,

Above T, Tsarevalues of the temperature at the core and the separatrix, respectively.
Similarly, the density profile is assumed to be given by arelationship like N=T*¥, where
parameter y can be taken, approximately asy =1.6 . Thus, we reduce our system of equations
to an autonomous system of first order differential equations:

du,; _ duy, _ dr _ _
d—E_fl(Uq),i’UG,i’T’M)’ T—fz(u¢,i,ua,nT,M), d_E_fs(T’M) (10)

where M is avector of control parameters (u, y, TA/Ts, K, m, A,..). The particular model
chosen for T in Eq.(9) alows usto express T'and T", which are implicit in Egs. (10), also as
functionsof T, viz.,

T =-(2/u)T-(T,/T,)7], T = (2/W?TR-(T,/T)T|a- 2T, /T)T] .
3. Numerical Solutions

While integrating system of Egs.(10) near the magnetic separatrix, solutions at times are
observed to display chaotic oscillations. One also observes that this effect becomes more
pronounced when the steepness of the temperature profile is increased, namely, when the
control parameter p is decreased. Such effects are usually due to the bifurcations of the
solutions near the fixed points of the vector field f; depending on the parameter values.
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Figure 1. Depending on the parameters steady state solutions can be highly oscillatory (a), or not (b).



A systematic numerical study for various parameter values indicate that the profiles of Uy,
and Ug; in aradial interval inside and near the separatrix corresponding to the threshold of the
temperature rise become multivalued displaying tendency to entanglement. Asthis behaviour
persists for a broad range of the parameter values, it seems to be generic within the model
assumptions, namely, for acollisional edge layer with a steep temperature gradient.

For various boundary value tripples [U4(0) , Ug(0), T(0)], the dynamical system given by
Egs.(10) can be integrated numerically to yield Uy, , Ug and T & an arbitrary location &.

Solutions depend on the parameters describing steepness of gradients, composition, and the
likely external disturbances on the system. Among such external disturbances, a likely weak
periodic excitation of temperature over the radial coordinate would be a likely trigger for
another homoclinic orbit bifurcation in our 3-D, saddle-node system. Indeed, the stability of
temperature profile itself is sensitive to many physical factors, as shown in Refs.[10, 11] by
Bachmann et al.. Namely, in radiative edge plasmas, temperature bifurcations and chaos can
be driven by a given time-modulated impurity density. In the light of those studies, it is not
unrealistic to add also aweak periodic temperature disturbance superimposed on the
monotonous model-T profile with a controllable steepness as assumed here. In that case,
further complicated bifurcations in the system would be the outcome. One can further look
into the effects of random temporal and spatial perturbationsin radial temperature and density
profiles in above equations, asthey are likely to exist in tokamaks. Perturbation of the regular
profiles by such random components can further lead to chaotic behavior of the rotation
Speeds, as above coupled equations would act like stochasticity amplifier or even asa
stochasticity generator. However, atime dependent analysis looking into the stability of the
full partial differential system, Eq.(3) and EQ.(4), in the slow-time scale is not attempted here.
Although, due to the coupling of governing equations, however, transient Ug would play a
role in driving Uy .

As some 2-D projections of the numerical solutions for poloidal and toroidal rotation
velocities were observed to display multivaluedness, as seen in Fig.2, studies were extended
to the bifurcation behaviour in the 3-D phase space due the existing parameters.
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Figure 2-a,b,c: Examples of entanglement of poloidal (lower curves) and toroidal (upper curves)
rotation velocity profiles onthe core side of the separatrix for various plasma parameters.

Primary parameter to be considered hereis p, which controls the steepness of the assumed
temperature profile given in Eq.(9) . Variation of the parameter u between 0.795 and 4 while
keeping other parameters fixed reveals atopological change of the trgjectories occupying the
phase space, as seen in Figs.3-8. Namely, when p is gradually reduced, causing the steepness
toincrease, near n=2 there arises a dense set of spiraling heteroclinic trgjectories on the core
side of the separatrix whose osculating planes aimost overlap. Each of these orbits leaves an
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Figure 3. Some representative orbits for arather steep temperature profile with  p=0.795. On the core

side of the separatrix there exists a system of isolated heteroclinic orbits with very close osculating
surfaces.
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Figure 4. One can clearly seein (d) that the heteroclinic set of trajectories comprise an isolated system.
Almost overlapping of the spiraling heteroclinic orbits can be seen from their projection onto the U,
and & planeasdepicted in Fig. 4(e).
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Figure 5. When temperature profile gets less steep (u=2), theisolated heteroclinic system disappears

and orbits coming from distant locations of phase space end up in densely located foci near the
Separatrix as seen in (b)-(e).

unstable singular point and reach a stable focus or a point attractor. Behaviour of these
heteroclinic orbits can be studied by calculating orientation and position of their local

osculating planes viatheir normals n, =dr, xdr,, /|d?i xdr,,| , and distancesto the origin

d. =n, [f . These calculations reveal that the orbital binormals (or normals of the osculating

planes) of the heteroclinic orbits induced by steep temperature profiles are almost parallel to
the &—axis.
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Fig 6. Left picture shows the projection of a particular hetroclinic orbit from Fig. 4-(d). The same
orhit is seen in the middle to lie almost on the same plane. An enlarged view of the projection of afew

chosen stable foci causing entanglement of the heteroclinic orbits is seen on theright.



Case p=1: Distance of the focal plane to the arigin
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Figure 7. Properties of the focal osculating planes: An exemplary calculation for p=1 shows that
normals of the focal osculating planes are paralld to the &-axis and their distance to the origin vary
continuously.
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Figure 8. When the steepness of the temperature profile is further decreased, one noticesin (b)-(e),
that the set of spiraling orbits disappesar.



4. Conclusions

Here we have shown that a steep temperature gradient in a highly collisional plasma under
discussion can induce a topological change, or aglobal bifurcation in the phase portrait of
rotation velocities. Steepness of the model temperature profile was varied by means of a
controlling parameter, . At acritical p, it was shown, that adense set of singular points
appeared in aparticular section of the phase space. This section extends from the magnetic
separatrix to some short distance on the core side. The heteroclinic trgectories among these
singular points were found to form aflat layer. Indeed, the osculator planes of orbits reaching
point attractors are found to become parallel to each other. Asthe line formed by the dense
point attractorsis almost tangential to these planes, orbits reaching point attractors are rather
sheared or entangled w.r.t. the other orbits in their surrounding, namely w.r.t. those moving
on the immediately neighboring planes. The shear providing the cause for local entanglement
of the trajectories, plasma stream is thus locally in a state of emerging chaos[12]. Since in the
present study of stationary field of velocities, particle trajectories and stream lines formed by
velocity vectors coincide, chaos of velocity field implies stochastic behaviour of passive
particles. Hence, this situation givesrise to what is called Lagrangian turbulence. A highly
colisional tokamak boundary layer plasma is thus shown to be able, similar to aweakly
collisional plasma, to provide a mechanism for generating turbulence.
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