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Since Stringer [1] had shown that any radial location in tokamak plasma is prone to a 
spontaneous poloidal spin-up with a concomitant rise of a radial electric field, plasma rotation 
and radial electric field gradually emerged as important factors in stability considerations for 
toroidal equilibrium and transport. As novel studies indicate, also tokamak turbulence 
instability due to the geodesic acoustic mode (GAM) or zonal flow have similar mechanisms 
involving perturbations of the plasma rotation velocities and the radial electric field [2-4].  
On the other hand, as plasma collisionality suppresses such instabilities, it is less likely to 
encounter rotational turbulence, for example, in high collisional plasmas with steep gradients. 
In the present extension of the neoclassical theory of rotation and electric field in high 
collisionality tokamak plasmas with steep gradients [5-6], however, it will be shown that in 
some radial interval the poloidal (and to some extent also toroidal) rotation velocity displays 
chaotic behaviour.   
 
1. Basic Equations 
 
Using the notations of former publications [5-6], the governing equations for the described 
regime are, continuity equation for the ions,  
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where  N

iiii SandUN �� =Γ are the ion flux and ion particle source, respectively, and 
momentum balance equation summed over both species: 
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Here iΠ
�

 is the viscosity tensor including 
i,0Π� , i21 ,−Π

�
 ,

i,43−Π�  contributions as defined in 

Refs. [5-8]. Using a scaling relevant to the tokamak edge, � ~B � /B � ~ (qR� J/cJ)
-1 ~L� /r ~ r/(qR),  

and by taking the toroidal projection of (2) and averaging over a flux surface, one finally gets 
the toroidal momentum equation for plasma with circular cross sections          
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where Z
~

 is the poloidal angle dependent part of )hh(JSZ i,
1N

i ψχφψ
− Γ∂−=  which may lead 

to the Stringer spin-up for a suitable 
�
 dependence of the source and 
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heat diffusion coefficient is iiii, m/P9.3 ν=χ . Likewise, one can obtain the neoclassical 

ambipolarity equation as  [5-6] 
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Above sytem (3-4) represents a two-time-scales problem, namely, it depends on a fast time 
variable  =t/� , as well as a macroscopic time t. A solution procedure for this problem was 
suggested in Ref. [9] specializing r to a boundary layer inside the magnetic separatrix by  �
=(r-rs)/L� . A smooth temperature profile model that depends on parameters � , Tc/Ts, � , 

simulating a steep gradient before the separatrix is taken with this system. 
 
2. Steady State Equations  
  
Now, we look for the equilibrium solutions of Eq.(3) and Eq.(4) for Uϕ,i and Uθ,i , using their 
lowest order expansions and time independent forms. These can be written as   
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For the neutral beam injection, one could also include a term like i,ii mNm ϕ

�
 to the left hand 

side of Eq.(6). Here, this term is dropped for simplicity. Substituting Eq.(5) in Eq.(6), we 
obtain  
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where the derivative w.r.t. ξ is denoted by a prime. Functions F and G in Eqs. (5-6) can be 
written, after normalizing at the separatrix,  as  
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A possible radial current is denoted here by ∆. The term K, representing charge exchange 
effects, is taken in the calculations for simplicity as a constant. In Eq.(7) the individual terms 
indicating partial derivatives of F and G will not be given here as they are lengthy. To this 
system of two first order nonlinear ordinary differential equations, Eqs.(5,7), an equation for 
the temperature variation along ξ must also be added. This will be taken now simply as a   
monotonic function of the minor radius, in which we can adjust the steepness of the profile by 
a parameter � : 
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Above  Tc , Ts are values of the temperature at the core and the separatrix, respectively. 
Similarly, the density profile is assumed to be given by a relationship like N=T1/γ, where 
parameter γ can be taken, approximately as γ =1.6 . Thus, we reduce our system of equations 
to an autonomous system of first order differential equations: 
 

 )M;T(f
d

dT
,)M;T,U,U(f

d

dU
,)M;T,U,U(f

d

dU
3i,i,2

i,
i,i,1

i, =
ξ

=
ξ

=
ξ θϕ

θ
θϕ

ϕ  (10) 

 
where M is a vector of control parameters (� , γ, Tc/Ts, K, m� , ∆,..). The particular model 
chosen for T in Eq.(9) allows us to express T′ and T ′′ , which are implicit in Eqs. (10), also as 
functions of T, viz.,  
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3.  Numerical Solutions 
 
While integrating system of Eqs.(10) near the magnetic separatrix, solutions at times are 
observed to display chaotic oscillations. One also observes that this effect becomes more 
pronounced when the steepness of the temperature profile is increased, namely, when the 
control parameter �  is decreased. Such effects are usually due to the bifurcations of the 
solutions near the fıxed points of the vector field fi  depending on the parameter values.  
 

 
 

  (a)      (b)  
 
Figure 1. Depending on the parameters steady state solutions can be highly oscillatory (a), or not (b). 



A systematic numerical study for various parameter values indicate that the profiles of U � ,i 
and U � ,i in a radial interval inside and near the separatrix corresponding to the threshold of the 
temperature rise become multivalued displaying tendency to entanglement. As this behaviour 
persists for a broad range of the parameter values, it seems to be generic within the model 
assumptions, namely, for a collisional edge layer with a steep temperature gradient.  
For various boundary value tripples [Uϕ(0) , Uθ(0), T(0)], the dynamical system given by 
Eqs.(10) can be integrated numerically to yield Uϕ, , Uθ  and  T  at an arbitrary location 

�
.   

 
Solutions depend on the parameters describing steepness of gradients, composition, and the 
likely external disturbances on the system. Among such external disturbances, a likely weak 
periodic excitation of temperature over the radial coordinate would be a likely trigger for 
another homoclinic orbit bifurcation in our 3-D, saddle-node system. Indeed, the stability of 
temperature profile itself is sensitive to many physical factors, as shown in Refs.[10, 11] by 
Bachmann et al.. Namely, in radiative edge plasmas, temperature bifurcations and chaos can 
be driven by a given time-modulated impurity density. In the light of those studies, it is not 
unrealistic to add also a weak periodic temperature disturbance superimposed on the 
monotonous model-T profile with a controllable steepness as assumed here. In that case, 
further complicated bifurcations in the system would be the outcome. One can further look 
into the effects of random temporal and spatial perturbations in radial temperature and density 
profiles in above equations, as they are likely to exist in tokamaks. Perturbation of the regular 
profiles by such random components can further lead to chaotic behavior of the rotation 
speeds, as above coupled equations would act like stochasticity amplifier or even as a 
stochasticity generator. However, a time dependent analysis looking into the stability of the 
full partial differential system, Eq.(3) and Eq.(4), in the slow-time scale is not attempted here. 
Although, due to the coupling of governing equations, however, transient Uθ would play a 
role in driving Uϕ .  
 
As some 2-D projections of the numerical solutions for poloidal and toroidal rotation 
velocities were observed to display multivaluedness, as seen in Fig.2, studies were extended 
to the bifurcation behaviour in the 3-D phase space due the existing parameters.  
 

 
 
Figure 2-a,b,c: Examples of entanglement of poloidal (lower curves) and toroidal (upper curves) 
rotation velocity profiles on the core side of  the separatrix for various plasma parameters. 
 
Primary parameter to be considered here is  � , which controls the steepness of the assumed  
temperature profile given in Eq.(9) . Variation of the parameter �  between 0.795 and 4 while 
keeping other parameters fixed reveals a topological change of the trajectories occupying the 
phase space, as seen in Figs.3-8.  Namely, when �  is gradually reduced, causing the steepness 
to increase,  near � =2  there arises a dense set of spiraling heteroclinic trajectories on the core 
side of the separatrix whose osculating planes almost overlap. Each of these orbits leaves an 



 
Figure 3. Some representative orbits for a rather steep temperature profile with   � =0.795. On the core 
side of the separatrix there exists a system of isolated heteroclinic orbits with very close osculating 
surfaces.  

 
 
Figure 4. One can clearly see in (d) that the heteroclinic set of trajectories comprise an isolated system. 
Almost overlapping of the spiraling heteroclinic orbits can be seen from their projection onto the U�  

and  �    plane as depicted in Fig. 4(e).  



          

 
 
Figure 5. When temperature profile gets less steep ( � =2), the isolated heteroclinic system disappears 
and orbits coming from distant locations of phase space end up in densely located foci near the 
separatrix as seen in (b)-(e). 
 
unstable singular point and reach a  stable focus or a point attractor. Behaviour of these 
heteroclinic orbits can be studied by calculating orientation and position of their local 
osculating planes via their normals  1ii1iii rdrd/rdrdn ++ ××=

�����

 , and distances to the origin 

iii rnd
��

⋅=   . These calculations reveal that the orbital binormals (or normals of the osculating 
planes) of the heteroclinic orbits induced by steep temperature profiles are almost parallel to 
the 

�
–axis.   

 

   
Fig 6. Left picture shows  the projection of a particular hetroclinic orbit from Fig. 4-(d). The same 
orbit is seen in the middle to lie almost on the same plane. An enlarged view of the projection of a few 
chosen stable foci causing entanglement of the heteroclinic orbits is seen on the right.  



 
Figure 7. Properties of the focal osculating planes: An exemplary calculation for � =1 shows that 
normals of the focal osculating planes are parallel to the � -axis and their distance to the origin vary 
continuously.   
 

 
 
Figure 8. When the steepness of the temperature profile is further decreased, one notices in (b)-(e), 
that the set of spiraling orbits disappear. 
 
 
 
 



4. Conclusions 
 
Here we have shown that a steep temperature gradient in a highly collisional plasma under 
discussion can induce a topological change, or a global bifurcation in the phase portrait of 
rotation velocities. Steepness of the model temperature profile was varied by means of a 
controlling parameter, � . At a critical � , it was shown, that a dense set of singular points 
appeared in a particular section of the phase space. This section extends from the magnetic 
separatrix to some short distance on the core side. The heteroclinic trajectories among these 
singular points were found to form a flat layer. Indeed, the osculator planes of orbits reaching 
point attractors are found to become parallel to each other. As the line formed by the dense 
point attractors is almost tangential to these planes, orbits reaching point attractors are rather  
sheared or entangled w.r.t. the other orbits in their surrounding, namely w.r.t. those moving 
on the immediately neighboring planes. The shear providing the cause for local entanglement 
of the trajectories, plasma stream is thus locally in a state of emerging chaos [12]. Since in the 
present study of stationary field of velocities, particle trajectories and stream lines formed by 
velocity vectors coincide, chaos of velocity field implies stochastic behaviour of passive 
particles. Hence, this situation gives rise to what is called Lagrangian turbulence. A highly 
colisional tokamak boundary layer plasma is thus shown to be able, similar to a weakly 
collisional plasma, to provide a mechanism for generating turbulence.  
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