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Abstract. A six dimensional test particle simulation is performed to study the ion cyclotron resonance heating 
physics in a realistic toroidal magnetic field and spatially inhomogeneous wave amplitude. It is found that a more 
general nonlinear treatment than a quasilinear operation is necessary for a more accurate evaluation of the ICRH 
(ion cyclotron resonance heating) rate. Using a multi-scale approximation, we introduce a new 5-1/2 dimensional 
physics model, which can accurately reproduce the 6 dimensional physics by a simple extension of the 
conventional 5D guiding center physics to include the wave-particle gyration phase nonlinearity as well as wave 
amplitude inhomogeneity. 
 
1. Introduction 
 
Cyclotron resonance heating technique is unique in that the location of the resonance layer is 
controlled by the frequency of the launched wave. Due to this localization ability the 
cyclotron resonance heating techniques are expected to be an essential tool for localized 
current drive, heating, and plasma control in a future magnetic fusion reactor such as ITER 
(International Tokamak Experimental Reactor).   
 
Although the quasi-linear (QL) rf heating operator is widely used for magnetically confined 
toroidal plasmas and highly versatile and relatively easy to implement in the interpretation of 
the experimental results concerning the rf-plasma interactions, there has been growing 
concern that the widely-used quasilinear operator to describe the wave-particle interaction 
physics may not be well-justified for application to a magnetic confinement device.  In this 
work, development of a new 5-1/2D particle simulation method will be reported which can 
dramatically improve the numerical simulation accuracy of ICRH heated ion dynamics in 
magnetic fusion plasmas, which may also be used to extend in the future to improve the 
accuracy of the wave propagation simulations in a self-consistent manner. Here, the 1/2D 
represents the wave-particle phase information and finite gyro-orbit effects: Together with the 
guiding center (GC) equation of motion, the phase information is kept in order to evaluate the 
phase distortion by the collisional effect and the nonlinear wave-particle interactions and gyro 
effects are taken into consideration through the numerical gyroaveraging technique. This 
method of tracking RF heating dynamics has been incorporated into the guiding center code 
XGC [1] as one option; the numerical results in the following sections are all obtained by 
running this version of XGC. 
 
In this paper we explain the QL prediction of the RF heating rate and compare the QL results 
with the ion Lorentz equation simulation ones which are the most reliable although highly 
time-consuming. The results from the 5-1/2D approach are also presented and compared to 
the QL and Lorentz equation results. Some details of the 5-1/2D GC equations of motion 
which contains the RF-plasma interaction terms are also presented.  
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2. Comparison of RF Simulation Results with QL Predictions 
 
The most conventional QL cyclotron resonance heating operator is based on Kennel-
Engelmann operator [2,3] and its bounced averaged form [4-6]. Although this theory has been 
highly successful in explaining many RF-related phenomena in tokamak [6], some inherent 
simplifications underlying the theory should not be neglected and clearly understood for its 
sound application to an actual experimental situation. Below we enumerate its simplifying 
assumptions for clarity. 
 
1. It assumes that the resonance interaction time is short enough to neglect the non-linear RF-
plasma interactions. Specifically, gyration phase nonlinearity is not included. 
2. The resonance layer is thin enough to ignore the wave amplitude inhomogeneity effects 
seen by gyrating particles as it crosses the resonance layer.   
3. Coulomb collisions are weak enough not to interfere with the QL wave-particle interaction 
process within a resonance layer. 
4. Wave-particle phase between the consecutive resonance layers is completely decorrelated 
by coulomb collision or nonlinear effects such that there is no superadiabatic effect in the RF 
heating dynamics. 
5. The respective modes (toroidal and poloidal) comprising the RF wave spectrum are 
completely incoherent between each other, thus individual mode is contributing to RF heating 
independently and there is no coherence effects between different poloidal modes.  
6. Usual analytic QL theories did not take into consideration the drift particle motion (finite 
drift orbit width and associated radial transport) in a tokamak, i.e., the particle orbit is 
assumed to follow the magnetic field line and there is no cross-field drift motion. 
 
In the past, there has been much debate over the validity of these assumptions in a realistic 
tokamak plasma. In fact, evidence exists in the literature that the collisional phase 
decorrelation is not strong enough to support the conventional understanding of ICRH 
interaction of energetic ions [7] although the collision is very effective at phase randomization 
in the presence of magnetic field inhomogeneity along the particle GC orbit for most thermal 
particles [3,8]. Modern wave propagation codes predict that the rf wave fields generally have 
strong spatial inhomogeneity and its poloidal modes spectrum is significantly wide and 
coherent between each other. It has been observed that finite drift orbit width effect has a 
nonnegligible effect on the RF heating results in DIII-D tokamak [9]. Thus, it deserves some 
careful work to check the validity of the QL theory against the most accurate Lorentz results. 
Below, we mainly concentrate on the items #1, #2, and #3.   
 
First, let us write down a well-known QL rf operator in terms of the energy W and magnetic 
moment μ as the following form [4,5]: 
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and the bounce average operation {⋅} [5] is defined as the time average of the quantity within 
the parenthesis over the unperturbed particle trajectory; similarly the time integral in the 
definition of DWW is done over the unperturbed particle trajectory including its drift motion 
across the flux surfaces. Here, τb  indicates the time for the particles to perform one poloidal 
transit motions, l is the cyclotron harmonic number, n is the toroidal mode number, E+ is the 

 



3                                TH/P6-13 

left-hand polarized component of the injected RF electric field, E– is the right-hand 
component, k⊥ is the local perpendicular wave vector, ω is the wave frequency, and Ω is the 
local cyclotron frequency. In the above, wave-particle phase difference θ is introduced such 
that the most significant contribution to the integral in Eq. (2) arises around the stationary 
phase point d/d dt l 0θ ω+ Ω −⋅k v= = , where vd represents the GC velocity. 
 
It is straightforward to calculate the QL energy variance that occurrs across the resonance: 

 ( )22 2 ,ql b WW
ql

W W Dσ τΔ Δ= − =  

which is evaluated by inserting numerical unperturbed trajectory in the time integral operation 
for the definition of DWW which thus naturally incorporates the finite drift orbit width effect as 
well as Airy function representation [10] for two close resonance points.  

 
Let us briefly describe the numerical procedure that is followed to obtain σ2

N (numerical 
energy variance). We use an EFIT tokamak magnetic field geometry under which numerical 
integration of equations of motion is done. Lorentz equation of motion as well as 5-1/2D GC 
equations is solved for each deuterium ions using a 4th order Runge-Kutta method in the 
presence of left-handed circularly polarized wave whose amplitude vector takes the form of 

 where e(1A 1 2( ) ,E - i+=E x e e ) 1 and e2 is parallel to k⊥ and b x e1, respectively and span the 
perpendicular plane orthogonal to the local equilibrium magnetic field direction (b=BB0/B0). 
We take its major radial wave number kR and toroidal mode number n to be -60 m  and 10, 
respectively with k

-1

Z=0. For the inclusion of Coulomb collision effects, we use the well-known 
Monte-Carlo collision scheme devised by Boozer [11] and only pitch angle scattering part of 
the Coulomb collision is implemented here. We assume here that test ions are collisionally 
scattered from realistic background plasma, whose density is 5 x 10  cm  and ion 
temperature is 4 keV. Simulation time step for the integration of Lorentz equation is taken to 
be 1/ (256f

13 -3

rf), where frf is the wave frequency, while that for the 5-1/2D GC equations to be 
one gyroperiod at the magnetic axis. The DIII-D magnetic equilibrium we use has magnetic 
field intensity of 2.12 T at the magnetic axis at R=1.725 m. To obtain σ2

N, kinetic energy 
change  for the ith test particle is accumulated, from which iWΔ 2WΔ  and WΔ  are 
obtained through ensemble averaging. The number of particles N that we use below for the 
average over the ensemble of particles is 100. The ensemble of particles is chosen for the 
wave-particle phase θ to be distributed uniformly over the particle initial conditions. Particles 
are initialized from the low field side of the midplane with definite values of energy and pitch 
and followed until they reach the high or low field side of the midplane again.  
 
In Figs. 1 and 2 we present spatial unperturbed particle trajectories (both GC and gyro-orbits) 
projected on the poloidal cross section (Fig. 1) and the temporal evolution of the energy 
variances (Fig. 2) for 40keV trapped particles under the RF field with constant amplitude   
(E+ (x) =E+0 =6kV/m) for l=1. The trapped particle's initial pitch value is appropriately set 
(v||/v = 0.475) for the banana turning point to be formed inside the cyclotron resonance layer. 
The downward arrow in Fig. 2 indicates the time instant after which pitch angle collisions are 
turned on. From Fig. 2, it can be clearly seen that the RF heating rate, i.e., energy variances, 
are greatly overestimated by the QL prescription in the trapped particle case. The reason for 
this great overestimation of the QL theory in predicting the energy variances may be 
attributed to the fact that actual resonant particle orbits can not be approximated well by the 
unperturbed ones in the calculation of RF diffusion coefficients (Eq. (2)) when RF heating 
geometry imposes the long duration of particle orbit within the resonance region as in Fig. 1, 
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thus violating QL assumption #1. Note that this case corresponds to the vanishing second 
derivative of θ at the resonance, i.e.,  and usually has been treated by using an Airy 
function representation without due consideration of the nonlinear effects. 

0resθ →

   
In Figs. 3 and 4, energy increments δW=ΔW-〈ΔW〉 vs. initial wave-particle phase θ0 (Fig. 3) 
and the energy variance σ2 versus E field strength E+0 (Fig. 4) are shown for the same 
parameter values as in Figs. 1 and 2. Fig. 3 clearly shows the typical sinusoidal variation of 
δW with the wave-particle phase θ0 for the QL results while the actual Lorentz simulation 
results show a rather nontrivial behavior as a function of θ0. Notice that 5-1/2D model 
accurately gives the same results as those from the Lorentz simulations. As for the effects of 
collisions we can see that its main effect is to bring about some random fluctuations of δW 
around the collisionless values, whereas statistically averaged quantities such as the energy 
variance are little affected by the collision as can be seen in Fig. 4. Therefore, assumption #3 
can be said to be valid generally in an averaged sense. As expected easily, the deviation of QL 
results from the Lorentz ones gets larger as the E field strength increases because the larger 
the E field strength is, the more the nonlinear orbit perturbation results. 
 
 

     
 FIG. 1. Guiding and gyro orbits on poloidal plane.               FIG. 2. σ2  versus time.  
                                                                                  

       
      FIG. 3. δW versus θ0  for E+0 =6kV/m.                FIG. 4. σ2  versus E+0. 
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Fig. 5 shows the energy variance σ2 versus E field strength E+0 . Initial pitch value is set to 0.8 
and the other parameters are the same as in Figs. 1−4 . Contrary to the trapped particle cases 
we can that there is a good agreement between the QL and Lorentz simulation results, which 
implies that passing particle heating dynamics can be well described by the QL theory.  
 
Finally, Fig. 6 represents the effects of the wave amplitude inhomogeneity E+ (x) on the RF 
heating results. Here, we model a RF amplitude gradient near the cyclotron resonance layer in 
a tokamak geometry as a tangent hyperbolic form represented as 
 ( ) ( )0, 1 tanh ( ) /inhom RE R Z E R R L+ += + − ,⎡ ⎤⎣ ⎦  
where Rinhom is the major radius of the center of amplitude variation and LR is the width of the 
strong amplitude gradient region. We take the values of Rinhom and LR to be 1.7m and 2.5 cm, 
respectively; note that the value of LR is comparable to the gyroradius size at the resonance  
(≈ 3cm) of the 100 keV deuterium ions. RF-induced energy variances versus E+0 are plotted in 
Fig. 6 for the case of 100 keV trapped particles (v||/v = 0.475) for fundamental harmonic case 
with the heating geometry as in Fig. 1. We can see that the RF-induced energy variances are 
much enhanced in magnitude by the wave amplitude inhomogeneity effects compared to the 
QL results. Again, 5-1/2D model gives the correct description of Lorentz simulation results. 
The failure of the QL theory in this case can be understood by considering that the resonance 
region may be sufficiently wide enough for the gyrating particles to feel the detailed spatial 
amplitude variation along their gyro-orbits. Therefore, the QL assumption #2 can be violated 
as well for the strongly inhomogeneous spatial wave structure and large gyro-orbit particles.  
The usual Bessel function in the QL diffusion coefficient in Eq. (2) should, then, be replaced 
by the more general expression incorporating actual spatial wave variation.  
 
The main intention of the simulation results in this section is to reveal the possible erroneous 
predictions of the QL theory and how it can be cured by the 5-1/2D GC model which is 
constructed to overcome the incapability of QL theory. In the next section, we will discuss 
some details of the 5-1/2D GC approach. 
 
   

             
   FIG. 5. σ2  versus E+0  for passing particles       FIG. 6. σ2  versus E+0 for nonuniform E+ (x) 
         with constant E+ profile.                                                              
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3. Guiding-Center Motion in the Presence of High Frequency RF Wave with Cyclotron 
Resonance 
 
Let us first start from the Lagrangian represented in terms of Littlejohn's standard GC 
variables Z=(X, ρ||, μ, φ) [12,13] as 

 ( ) ( )* 0
|| 0 1 0 1, , , ( ) ,q B qd d H dt t d

c c
ρ μ μ φΓ + + + +

Ω
= ⋅ − ρ ⋅ ρ =A X X A X X Γ + Γ  (3) 

where X represents the GC position, ρ|| =v||/Ω normalized parallel velocity, μ =mv⊥2 /2B0 (X)  
the magnetic moment, φ gyrophase, ρ gyroradius vector, A1 vector potential of the RF 
perturbation part, H0 unperturbed Hamiltonian, Γ0 unperturbed Lagrangian, and Γ1 perturbed 
Lagrangian. The guiding center variables are a special set of coordinates in which the 
gyromotion is decoupled from the main GC dynamics in the absence of the wave perturbation. 
In Eq. (3), H0, and A∗ are defined by 
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Due to the presence of the wave perturbation A1, the Lagrangian Γ depends on the fast 
gyromotion time-scale dynamics through Γ1 which should also be averaged.  
 
In order to remove the fast time-scale dynamics brought about by the perturbation Γ1 from the 
main averaged GC equations of motion which we are seeking for, we can follow the 
Lagrangian Lie coordinate transformation perturbation method [14-16] which gives the new 
averaged coordinates ( ,||= , , )ρ μ θZ X  and Lagrangian Γ  in the form of 

 ( )* 0 0 0
|| 0 1, , ,q c B B Bd d H H

c ql l l
μρ μ μ θ μωΓ +
Ω Ω Ω

⎡ ⎤ ⎛= − ⋅ − −⎜⎢ ⎥ ⎝ ⎠⎣ ⎦
A k XX dt+ ⎞

⎟  (4) 

where we use the wave-particle phase difference θ  as one phase space variable instead of 
φ  because it is slowly varying near the lth harmonic cyclotron resonance surfaces, thus 
suitable for the averaged variable. Note that in the present case of resonant interaction with 
high wave frequency on the order of gyrofrequency, gyrophase dynamics is not completely 
decoupled from the main GC dynamics. Comparing Eqs. (3) and (4) it can be seen that the 
wave term perturbing the symplectic structure of the Lagrangian Γ is thrown into the 
Hamiltonian component ( 1H ) for the new Γ , which can be realized through careful 
determination of the generating vector G1 and gauge function S1 in the Lie transformation 
methodology[14-16]. The explicit form of the first-order perturbed Hamiltonian 1H  is 

 ( ) ( )1 || 1 1 1 ||
0

, , , ( )  ( , ) , , ,i i
i Al

d iqH Z t H
dt

e θρ μ θ ρ μ
ω

Γ +⎛ ⎞= − = ⋅ ρ =⎜ ⎟
⎝ ⎠

X v Z E X X  (5) 

where (d/dt)0 is the time rate of change of the operand evaluated along the unperturbed GC 
orbit given by Γ0, the overline symbol above ( )1 0

/ i
i d dt ZΓ  stands for extracting slowly 

varying part of that or averaging over gyroperiod time scale, the angular braket notation with 
subscript l denotes the lth gyroharmonic component, and ( )v Z  is a velocity vector 
(neglecting drift component) represented in terms of Z .  
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Applying the Euler-Lagrange equations to the Lagrangian Γ , 5-1/2D averaged GC equations 
of motion with RF interaction terms can be obtained as follows: 
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where  and the three finite Larmor radius functions * ∇×=Β 1 1 1, , /A A AH H H μ∇ ∂ ∂  are 
defined for an arbitrary spatial wave structure as 
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which can be numerically calculated as a discrete sum over Ng gyropoints. As for the 
magnitude of Ng we used ten points approximation although it can be varied depending on the 
characteristics of the wave perturbation and particle energy. Let us point out the main 
improvements of the above 5-1/2D GC equations over the QL method: 
 
1. The 5-1/2D equations are nonlinear in the GC variables and thereby can account for the 
nonlinear RF-plasma interaction process. 
2. Arbitrary spatial wave structures, such as broad poloidal modes spectrum and highly 
inhomogeneous amplitude profiles, can be retained in the calculation through the numerical 
gyroaveraging technique applied to Eqs. (10) −(12).  
3. Phase correlations between distinct resonance interactions and associated superadiabatic 
effects are also covered under the 5-1/2D equations because phase information is kept along 
the repeated particle transit motions over the poloidal direction. 
4. Finite particle drift orbit width and associated radial transport effects are naturally built into 
the model.    
   
Therefore, it is obvious that the 5-1/2D GC model can correct almost all deficiencies, i.e., 
simplified assumptions that we have mentioned in Sec. 2, of the current QL theory about 
tokamak RF-plasma interaction phenomena. Although Eqs. (10) −(12) contain only the left-
hand component E+, it can be straightforwardly extended to include the right-hand component 
E− as well.  
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4. Conclusion and Discussions 
 
In this work, the validity of the various QL assumptions has been checked numerically against 
the 6D particle simulation results using a realistic DIII-D magnetic equilibrium (g-eqdsk file).  
The importance of the nonlinear wave-particle interaction for a tokamak plasma ions, the 
significance of the wave-field inhomogeneity, and the collisional effects on the heating rate 
has been demonstrated. To incorporate these nonconventional effects, we introduce a 5-1/2D 
GC equation approach which can accurately account for the nonlinear as well as wave-field 
inhomogeneity effects in a GC time scale without the need to resolve detailed ion gyration 
dynamics.  The 5-1/2D simulation results has been verified against the 6D simulation results.  
 
For the substantial speed up of the numerical GC simulation with 5-1/2D model it may be 
preferred that the RF-dependent parts of the GC equations are only turned on in the vicinity of 
cyclotron resonance surfaces; outside which normal unperturbed GC orbits can be followed. 
Moreover, for most passing orbits except for those tangent to the resonance surface for off-
magnetic axis heating situation the conventional QL heating scheme can be applied in good 
accuracy, which can additionally reduce the simulation time cost. Therefore, it is certain that 
there are various efficient ways of combining 5-1/2D and conventional QL schemes.  
 
In the literature high-frequency gyrokinetic formalism [17,18] has been developed which, in 
most cases, was linearized and thereby losing the possibly important nonlinear effects on RF 
heating dynamics. Our construction of 5-1/2D equations tries to avoid this simplification and 
retain important effects of nonlinear wave-particle interaction and detailed spatial wave 
structure which could cause a large difference of actual heating rate from the conventional QL 
results as we have seen in this paper. 
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