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Abstract. In extreme reversed-shear plasma discharges, the ratio between the poloidal and the toroidal

magnetic fields obtained from motional-stark-effect measurements displays significant relative errors inside

the core region, with the error bar spanning from small positive values into small negative ones, and

therefore magnetic equilibria with toroidal-current reversal cannot be excluded. Following a perturbative

approach to solve the Grad-Shafranov equation, a numerical scheme allowing toroidal-current reversed

equilibria constrained by experimental data to be computed is proposed and subsequently tested using

available measurements from JT60-U plasmas in a typical current-hole scenario.

1. Introduction

Contrary to usual plasma configurations, where the toroidal current density J(φ)(R,Z)
distribution is peaked at the magnetic axis, low or even reversed-shear discharges display
hollow J(φ)(R,Z) profiles and are obtained by externally supplied current drive (neutral
beam injection or radio-frequency heating). Strongly reversed-shear scenarios have been
regarded with increasing interest, as they favor the build-up of internal transport barriers,
thus improving heat and particle confinement [1, 2]. Despite the amount of shear reversal
achieved, a poloidal field finite everywhere in the plasma column (except at the axis)
has always been believed to be necessary for proper plasma sustainment. However, stable
configurations have been observed in several experiments, for which the measured poloidal
field is nearly zero throughout a significant region around the magnetic axis (the so-called
current-hole) [3, 4, 5]. Moreover, such configurations proved to be resilient, keeping the
toroidal current density clamped near zero, even if the supplied current-drive power seems
sufficient to decrease J(φ)(R,Z) towards negative values inside the current hole [5] and
thus become a toroidal-current reversal (TCR) equilibrium.

These facts raised a number of questions regarding the possible existence of TCR solutions
to the Grad-Shafranov (GS) equation [6, 7]. Indeed, the development in such magnetic
configurations of a poloidal-field reversal layer, for which the enclosed toroidal current
does vanish, poses several problems to conventional GS equilibrium solvers and precludes
their use in TCR scenarios. Part of these problems may be traced back to the widespread
assumption that magnetic flux surfaces are always nested, which is not generally the case
for TCR configurations [8]. Additionally, the occurrence of poloidal-field reversal layers
has been shown to impose some constraints on the zeroth-order (in an inverse aspect-
ratio expansion) profiles for J(φ)(R,Z) and for the plasma pressure p(R,Z) [8]. However,
recent developments enabled GS codes to tackle poloidal-field reversal layers and to handle
a large variety of internal plasma profiles [8], allowing in this way a suitable modeling of
experimental data.



2 TH/P3-9

In current-hole regimes, the ratio B(θ)/B(φ) between poloidal and toroidal magnetic fields,
which is obtained from motional-stark-effect (MSE) measurements, display significant
relative errors inside the core region, with the error bar spanning from small positive
values into small negative ones. Therefore, such uncertainty does not exclude (at least
by itself) GS equilibria with toroidal-current reversal, some of which are herein computed
using input profiles and boundary conditions constrained by available experimental data
from current-hole discharges in the JT60-U tokamak [4]. Far from pretending to be a
rigorous equilibrium reconstruction tool, since it is constrained by MSE and plasma-
pressure data along a single chord only, the aim of this approach is to show that TCR
equilibria compatible with experimental measurements are able to be computed in extreme
reversed-shear scenarios, which may aid to understand the physics behind the reported
resilience of tokamak magnetic configurations with a current hole [5].

2. Method Description

To solve the GS equation

−R2∇ · (R−2∇ψ) = −Jφ(R,ψ) = R2ṗ(ψ) + Ẏ (ψ), (1)

a perturbative approach is used [9], where Jφ = RJ(φ), p(ψ), and Y (ψ) = 1
2
B2

φ(ψ) are,
respectively, the normalized covariant toroidal current density, the plasma pressure, and
the squared poloidal current. This has been adapted to cope with the existence of a
poloidal-field reversal layer [8], and the solution for the normalized poloidal flux ψ(r, θ) is
sought in laboratory coordinates r and θ (with r the radial distance to the axis normalized
to the minor radius a and θ a poloidal angle measured clockwise from the equatorial plane
at the high-field side), avoiding the need to define flux coordinates and, consequently, any
beforehand assumption about flux-surface topology. In brief, it involves writing an inverse
aspect ratio ε = a/R0 (with R0 the major radius) power series for each function in Eq. (1),
that is

R(r, θ; ε) = 1 − ε r cos θ, (2a)

ψ(r, θ; ε) = ψ0(r) +
+∞
∑

n=1

k=n
∑

k=0

εn

n!
ψnk(r) cos kθ, (2b)

p[ψ(r, θ; ε)] = p0[ψ0(r)] + ε ṗ0[ψ0(r)]
[

ψ10(r) + ψ11(r) cos θ
]

+ · · · , (2c)

Y [ψ(r, θ; ε)] = Y0[ψ0(r)] + ε Ẏ0[ψ0(r)]
[

ψ10(r) + ψ11(r) cos θ
]

+ · · · , (2d)

where the dot stands for a flux derivative d/dψ, and subsequently collect for the same
powers of ε. Whilst the zeroth-order term ψ0(r) relates with the zeroth-order profiles
J0

φ[ψ0(r)] = ṗ[ψ0(r)] + Ẏ [ψ0(r)] by means of the nonlinear relation

r2ψ′′

0(r) + rψ′

0(r) = r2J0
φ[ψ0(r)], (3)

the higher-order perturbations ψnk(r) are computed solving the hierarchy of linear differ-
ential equations

r2ψ′′

nk(r) + rψ′

nk(r) +
[

s(r) − k2
]

ψnk(r) = bnk(r), for s(r) = −r2J̇
(0)
φ [ψ0(r)], (4)

where the source term bnk(r) couples lower-order perturbations ψmk(r) and flux derivatives
dmp/dψm and dmY/dψm only, with m < n, and the boundary conditions ψ∗

nk = ψnk(r
∗)

at some r∗ > 0 must be provided for k ≥ 2.
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FIG. 1. Zeroth-order ratio B0
(θ)(r)/B

0
(φ)(r) (solid line, left panel) and plasma pressure p0(r)

(solid line, right panel), with MSE measurements as extracted from Ref. [4] (crosses, left panel)

and the function ne(r)[Te(r) + Ti(r)/Zeff] as defined in Eq. (7) (dotted line, right panel).

The zeroth-order part of the equilibrium is fully established by setting two of the four
profiles ψ0(r), p0[ψ0(r)], Y0[ψ0(r)], or J0

φ[ψ0(r)]. Unlike regular equilibria, where these can
be supplied as free radial functions and their flux derivatives computed using the recursive
operator

dn

dψn
=

1

ψ′

0

d

dr

(

dn−1

dψn−1

)

(5)

as many times as needed [9], in TCR configurations ψ′

0(r) vanishes at the reversal layer
r = rL and models of the type J0

φ(ψ; a1, . . . , ai) and p(ψ; b1, . . . , bj), depending on a few
parameters a1, . . . , ai and b1, . . . , bj which are chosen to get a suitable solution to Eq. (3),
must be provided [8]. To this end, let

J0
φ(ψ0) =

{

− 7
10

− (90ψ0)
3 ⇐ r ≤ rL

375∆+1000∆2

1+65∆−200∆2+600∆3 + f(1
2
, 10−3,∆)

∑4
p=0 ap∆

p ⇐ r > rL
(6a)

p0(ψ0) =

{

40 ⇐ r ≤ rL

40 exp(−6∆) + f(1, 10−3 ,∆)
∑5

p=0 bp∆
p ⇐ r > rL

(6b)

with the switch-like function f(α,∆0,∆) = 1
2
{1+tanh[α−1(1−∆/∆0)]} and ∆ = ψ0(r)−

ψ0(rL). The sets of parameters a0, . . . , a4 and b0, . . . , b5 are chosen in order to ensure the
continuity of J0

φ(ψ0) and p0(ψ0), along with their flux derivatives up to the fourth and fifth
orders respectively, over the reversal layer. Inserting the proposed model for J0

φ(ψ0) into
Eq. (3), one may solve the latter for ψ0(r) and afterwards compare the zeroth-order ratio
B0

(θ)(r)/B
0
(φ)(r) = ψ′

0(r)/
√

2Y0(r) with available MSE data and the zeroth-order plasma

pressure p0[ψ0(r)] with the function ne(r)[Te(r) + Ti(r)/Zeff] where

ne(r) = 1 +
1.65 + 0.45r

1 + 47r8
, Te(r) =

5.15 + 2.74r

1 + 7.51r5
, and Ti(r) =

7.55 + 2.67r

1 + 15.3r7
(7)

are rational functions that best fit measured electron density (m−3) and electron and ion
temperatures (KeV) [4], which are valid for r ≥ 0.25 only, and Zeff = 1 (Fig. 1).

At first glance, the proposed zeroth-order profiles seem to afford only a rather crude ap-
proximation to experimental data. Nonetheless, one must bear in mind that whenever
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FIG. 2. Third-order ratio B(θ)(r, π)/B(φ)(r, π) (solid line, left panel) and plasma pressure p(r, π)

(solid line, right panel), with the best-fit function h(r) as defined in Eq. (9) (dotted line, left

panel). Other items as in Fig. 1.

an higher-order perturbation is computed and added to the considered solution ψ(r, θ)
the profiles B(θ)(r, π)/B(φ)(r, π) and p[ψ(r, π)], along the chord θ = π, will change accord-
ingly. Therefore, the aim is to somehow direct these changes in a way that minimizes the
difference between numerically computed and measured quantities. To achieve this, one
starts noting that if everything else is kept fixed, equilibria accurate up to third-order
terms in ε are determined by the three values ψ∗

22, ψ
∗

32, and ψ∗

33, which are assigned to
the boundary conditions of the terms ψ22(r), ψ32(r), and ψ33(r) at r∗ = 1 when solving
Eq. (4). Once a given equilibrium is computed, a three-valued cost function is defined as

χ2(ψ∗

22, ψ
∗

32, ψ
∗

33) =

∫ 1

0
[B(θ)(r, π)/B(φ)(r, π)− h(r)]2 dr

∫ 1

0
h2(r) dr

, (8)

where B(θ)(r, θ) = R−1∂ψ(r, θ)/∂r, B(φ)(r, θ) = R−1
√

2Y (r, θ), and

h(r) = −
r

100

19 − 49r

10 − 37r + 48r2 − 18r3
(9)

is a radial function that best fits the measured MSE data. Then, standard nonlinear
minimization algorithms may be employed to find boundary conditions yielding local
minima for χ.

3. Results

After implementing the procedure described above using the Nelder-Mead Simplex search
algorithm [10], a minimum for the cost function defined in Eq. (8) was found at ψ∗

22 = 23,
ψ∗

32 = −255, and ψ∗

33 = 130. The ratio B(θ)/B(φ) and the plasma-pressure profiles for
the corresponding equilibrium are depicted in Fig. 2, where they are seen to provide a
suitable approximation to measured data along the chord θ = π. In Fig. 3, the con-
tours of constant poloidal flux ψ(r, θ) are displayed, with the island system which unfolds
around the reversal layer being clearly visible. When compared against other available
equilibrium reconstructions (e.g. Fig. 1 in Ref. [4]), the flux surfaces seem a bit distorted,
with accentuated triangularity and misplaced external x-points. However, this should be
expected because a) the only constraint was made along a single chord, b) no data other
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FIG. 3. Contour levels of the poloidal-flux function ψ(r, θ) (solid lines) and the external separa-

trix (dotted line).

than MSE and plasma pressure where used, and c) up-down symmetry was assumed, all
these intended to keep the formalism as simple as possible. Adding more information
as, for instance, the shape of the last closed flux surface, is likely to improve computed
equilibria. Moreover, the internal x-point located at low-field side appears to be related
with the flat pressure profile prescribed to the core zone, and further steps should be taken
to assess if a non-flat pressure distribution can transform it into an o-point. This would
contribute to prevent the inner negative current channel from being pushed outwards,
where it can reconnect with the positive-current plasma [11]. Finally, the distribution
of the toroidal current density along the equatorial plane is plotted in Fig. 4. This plot
shows that a moderate negative current density of the order of −250 kA m−2 flowing near
the axis (r ≤ 0.1) accounts for a small ratio B(θ)/B(φ) ≈ 3 × 10−3.

4. Conclusions

For the first time, TCR equilibria were computed using available experimental data from
tokamak plasma discharges with extreme reversed shear. Although the proposed scheme
should not be taken has a rigorous equilibria reconstruction tool, its purpose is twofold:
In the first place, it shows that TCR equilibria are possible, within measurement errors, in
current-hole scenarios for which the toroidal current has been assumed to be nearly zero.
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FIG. 4. Toroidal current density distribution along the equatorial plane (θ = 0 and θ = π) for

the zeroth-order (dotted line) and the third-order (solid line) equilibrium.

Secondly, it illustrates how such equilibria can be computed and related with experimental
data, opening the way for more elaborate approaches to be devised.
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