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Abstract. Linear instability and nonlinear dynamics of multiple tearing modes (MTMs) are studied with
a reduced magnetohydrodynamic (RMHD) model of a large-aspect-ratio tokamak plasma in the limit of
zero pressure. When low-order rational surfaces (such as those for q = 1 or 2 with q being the safety
factor) are in close proximity, tearing modes on the rational surfaces are strongly coupled and exhibit a
broad spectrum of positive growth rates with dominant mode numbers around mpeak ∼ 10. It is shown
that collisionless double tearing modes (DTMs) due to electron inertia also have similar linear stability
characteristics. Nonlinear dynamics associated with fast growing high-m MTMs can affect the evolution
of low-m modes. For example, resistive q = 1 triple tearing modes (TTMs) generate MHD turbulence in
a disrupted annular ring and the turbulence can impede the growth of an internal kink mode at a finite
amplitude. Possible interactions between MTMs and sheared zonal flow are also discussed.

1. Introduction

In discharges with a non-monotonic current profile the profile of the safety factor q main-
tains an off-axis minimum qmin after the current ramp-up. Such configurations have
attracted much attention due to their favorable confinement properties, in particular, the
formation of an internal transport barrier (ITB) [1]. This enhanced reversed-shear (ERS)
tokamak scenario is regarded as a strong candidate for demonstrating self-sustained nu-
clear fusion conditions in ITER, so it is important to understand instabilities that may
occur near qmin, where the ITB usually forms. In this study, we focus on current-driven
instabilities, i.e., kink and tearing modes [2, 3], that are known to cause changes in the
magnetic topology by driving magnetic reconnection. This may lead to reduced con-
finement and disruptive instabilities [4], but may also provide paths to other (possibly
dynamic) “equilibrium” states.

In ERS-type configurations, there are pairs of resonant surfaces around qmin. These are
known to be unstable to double tearing modes (DTMs) [2]. In general, multiple resonant
surfaces may give rise to multiple tearing modes (MTMs). DTMs were studied extensively
in experiment, theory and numerical simulation (e.g., Ref. [5] and references therein).
The theoretical and numerical studies that have been presented so far include those on
resistive DTMs in a static equilibrium, the effects of shear flow, neoclassical effects, and
various reconnection mechanisms other than classical resistivity, such as electron inertia
and hyper-viscosity. However, in these studies, the focus was mainly on low-m DTMs.
Recently, it has been found that high-m modes can become strongly unstable when the
distance between neighboring resonances is small [5, 6].
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This paper presents our recent analyses on linear stability and nonlinear dynamics of
current-driven MTMs with high poloidal mode numbers m ∼ O(10) in the core region
of a tokamak plasma. The physical model is described in Section 2. In Section 3, the
properties of both collisional (resistive) and collisionless DTMs (due to electron inertia)
are examined and both are shown to exhibit a broad spectrum of unstable modes with
growth rates peaking at m = mpeak ∼ 10. A semi-empirical formula for the dependence
of mpeak on the system parameters is also proposed. The nonlinear dynamics observed
in our simulations include (i) enhanced growth of low-m modes in the early nonlinear
regime, (ii) an off-axis internal disruption in the region between the resonances, and
(iii) subsequent formation of magnetohydrodynamic (MHD) turbulence in the disrupted
region. The reconnection dynamics are dominated by modes with m ∼ mpeak and the
lack of dissipation in the collisionless case allows multiple reconnection cycles to occur.
The introduction of sheared zonal flow near qmin stabilizes DTMs and gives rise to an
ideal instability which again is dominated by high-m modes. In Section 4, we consider an
equilibrium with three nearby qs = 1 resonances to study the interaction between triple
tearing modes (TTMs) and the m = 1 internal kink mode. Through nonlinear driving by
high-m TTMs, the m = 1 mode undergoes enhanced growth, and due to TTM-induced
turbulence the m = 1 mode can saturate at a finite amplitude. These phenomena may
be possible causes of some of experimentally observed phenomena related with sawtooth
crashes [6, 7], especially, precursor-less fast sawtooth trigger and partial sawtooth crashes
(e.g., Ref. [4]).

2. Physical Model

A tokamak plasma can be described by a reduced magnetohydrodynamic (RMHD) model
[8] for the evolution of the magnetic flux ψ and the vorticity u, given by

∂tF = [F, φ] − ∂ζφ− S−1
HpF , (1)

∂tu = [u, φ] + [j, ψ] + ∂ζj +Re−1
Hp∇

2
⊥u . (2)

under the assumption of incompressibility and zero pressure. The torus is approximated
by a periodic cylinder with coordinates (r, ϑ, ζ). The time is measured in units of the
poloidal Alfvén time τHp = (µ0ρm)1/2a/B0 and the radial coordinate is normalized by the
minor radius a of the plasma. ρm is the mass density and B0 the strong axial magnetic
field. F = ψ + d2

ej is the generalized flux function with de = (me/nee
2)1/2 being the

electron skin depth. φ is the electrostatic potential, j = −∇2
⊥ψ the current density,

u = ∇2
⊥φ the vorticity. Each field variable f is decomposed into an equilibrium part f

and a perturbation f̃ as f(r, ϑ, ζ, t) = f(r)+ f̃(r, ϑ, ζ, t) and expanded into Fourier modes,
ψm,n and φm,n with m and n being the poloidal and toroidal mode numbers. We consider
only the nonlinear couplings between modes of a single helicity h = m/n, so the problem
is reduced to two dimensions.

Magnetic reconnection may occur due to either resistivity or electron inertia. It is re-
ferred to as collisional or collisionless reconnection depending on the cause. The magnetic
Reynolds number SHp in Eq. (1) is defined by SHp = τη/τHp , with τη = a2µ0/η0 and
η0 = η(r = 0) being the resistive diffusion time and the electrical resistivity at r = 0.
In typical nonlinear simulations, SHp ∼ 106 − 108 is used as it is numerically efficient
and physically reasonable in the framework of the model used. The kinematic Reynolds
number ReHp in Eq. (2) is defined by ReHp = a2/ντHp, where ν is the kinematic ion vis-
cosity, and set to satisfy the Prandtl number Pr = SHp/ReHp . 10−1, so that the effect
of viscosity on the instability of the dominant modes may be neglected. Linear analysis
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Figure 1: (a): Equilibrium q profile with reversed central shear. (b): Linear growth rate spectra γlin(m)
of strongly coupled qs = 2 DTMs. Spectra of collisional DTMs (de = 0) are plotted for SHp = 106 and
SHp = 108. Two collisionless cases are shown for de = 0.005 and de = 0.01 (SHp = 108). (c): Linear
eigenmode structure of a high-m DTM [here, (m,n) = (10, 5)] for SHp = 108 and three values of the
electron inertia: de = 0, 0.005, 0.1 (top: flux function ψ; bottom: displacement velocity vr ∝ φ/r).

of Eqs. (1) and (2) is given in Ref. [5]. Nonlinear calculations were carried out with the
numerical code described in Ref. [7].

3. Double Tearing Modes (DTMs)

In this Section, DTMs are analyzed for the equilibrium q profile given in Fig. 1(a), where
two qs = 2 resonant surfaces are separated by a small distance D12 = rs2 − rs1 = 0.06.
The linear instability and nonlinear evolution of collisional (resistivity-dominated) and
collisionless (electron-inertia-dominated) DTMs are presented [9, 10]. In addition, the
effect of sheared zonal flow is discussed.

3.1. Spectrum of Unstable Modes and Mode Structures

In Fig. 1(b) the spectra of linear growth rates γlin(m) of strongly coupled DTMs are shown
for several values of the magnetic Reynolds number SHp and electron skin depth de. Both
collisional and collisionless DTMs have fast growing modes with m ∼ 10. The spectrum
of collisionless DTMs tends to have a long high-m tail. Resistivity stabilizes modes with
very high m; e.g., for SHp = 106 modes with m > mmax = 18 are stable. Electron inertia,
in turn, seems to have a destabilizing effect that overcomes the stabilization by small
resistivity included in all cases (SHp = 108). The mode structure of a typical high-m
DTM is shown in Fig. 1(c). Such even-parity eigenmodes are dominant for small D12 [5]
and there seems to be no significant difference between collisional and collisionless DTMs.

Pritchett, Lee and Drake [11] derived analytical forms for the linear growth rate γlin of
DTMs. In the strongly coupled (i.e., m · D12 small) and weakly coupled (i.e., m · D12

large) limits, the growth rate depends on the poloidal mode number m as

γstrong
lin ∝ m2/3, γweak

lin ∝ m−6/5,

Note that the growth rate increases with m in the strong coupling limit whereas it de-
creases with m in the weak coupling limit. It is also shown in Ref. [11] that, at the
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Figure 2: (a) Contour plots of the helical flux ψ∗ = ψ+ r2/(2qs) with qs = 2, showing magnetic reconnec-
tion due to collisionless DTMs in the nonlinear regime. The arrows in snapshots (A) and (B) indicate the
first reconnection cycle: a primary reconnection event (island formation) and a secondary reconnection
event where the same island disappears on the other side of the inter-resonance region. The arrows in
snapshot (C) and (D) indicate a second cycle. (b) Time evolution of the q profile.

transition between strong and weak coupling, the poloidal wave number kϑ = m/r0, with
r0 being the radial location of qmin, satisfies

kϑxs ≈ (k2
ϑ/B

′
sSHp)

1/9 , (3)

where xs = D12/2, B′
s = s/qs and s = rq′/q is the magnetic shear evaluated at a resonant

surface. Our conjecture is that, for a fixed xs, Eq. (3) also gives the transition of the
dependence of growth rate on m from an increasing function of m to a decreasing function
of m. In other words, directly from Eq. (3), we obtain mpeak = r0/(x

9
sB

′
sSHp)

1/7. Based on
this conjecture and our extensive numerical analyses, we propose a semi-empirical formula
of mpeak as

mpeak ≈ r0/(x
9
sB

′
sSHp)

1/7 + 1. (4)

Equation (4) is valid for small xs = D12/2, where mpeak ≫ 1. For example, for the q profile
in Fig. 1(a), where r0 = 0.42, B′

s ≈ 0.11, xs ≈ 0.03, one obtainsmpeak = 8, 6, 5 from Eq. (4)
for SHp = 106, 107, 108, respectively, which agree with numerically obtained values of mpeak

under the same conditions. Nonlinear simulations indicate that mpeak reliably determines
the size of the magnetic island structures when the initial perturbation is random.

3.2. Nonlinear Dynamics

For a random-phase broad-band perturbation, the modes reaching the nonlinear regime
first are typically those withm ∼ mpeak. When their amplitudes are sufficiently large, their
nonlinear coupling may drive slower eigenmodes. For instance, (m,n) = (8, 4) and (10, 5)
couple to produce a (2, 1) component. In general, the driven mode satisfies m′ = m1±m2

(similar for n) and acquires a large growth rate γdrive(m
′) = γlin(m1) + γlin(m2). Here, m1

and m2 are the driving modes. Such three-mode interactions appear to be the dominant
dynamics in the early nonlinear regime for spectra similar to those in Fig. 1(b). For
example, a fast growth of the m = 1 internal kink mode is shown to be driven by qs = 1
TTMs in Section 4.1.
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In the fully nonlinear regime, the fast growing high-m modes produce small magnetic
islands and an annular collapse occurs in the inter-resonance region. A significant differ-
ence between the collisional and collisionless case is observed in the reconnection dynam-
ics: collisionless reconnection permits multiple reconnection cycles, as can be observed in
Fig. 2(a). Secondary reconnection was demonstrated numerically by Biskamp and Drake
[12] for the m = 1 internal kink-tearing mode. The results in Fig. 2 show that collisionless
DTMs behave in a similar way. In the collisionless case the annular collapse eventually
raises q above qs = 2, leading to a stable relaxed state, as can be seen in Fig. 2(b). In the
collisional case, resistive decay of the profile perturbation (m = 0 mode) keeps qmin close
to or slightly below qs = 2. Here the systems settles down in a state of balance between
continued weak MHD activity and the tendency of the resistive dissipation to drive the
system back to its original unstable state.

3.3. Interaction with Sheared Zonal Flows

Motivated by experimental evidence of strongly sheared zonal flows in the vicinity of qmin

in ERS discharges [13] and their possible relevance for the formation of an internal trans-
port barrier (ITB) [1], effects of shear flows on resistive MTMs have been investigated.
It has been shown in Ref. [14] that, for qs = 2 DTMs, (a) higher-m DTMs may remain
dominant even in the presence of significant shear flow, and (b) sufficiently strong shear
flow itself may destabilize high-m modes near qmin. The linear growth rates of shear flow
driven modes are independent of resistivity. In the nonlinear regime, small but finite resis-
tivity allows magnetic reconnection to occur. During the further evolution the flows and
the magnetic structures become increasingly turbulent. The results also indicate that,
with sufficiently small resistivity, the flattening of the q profile takes significantly longer
than the flattening of the flow profile, so that the latter becomes the primary nonlinear
saturation mechanism.

4. qs = 1 Triple Tearing Modes (TTMs)

The results obtained for DTMs may be applied to configurations with more than two
resonant surfaces. In this section we discuss qs = 1 triple tearing modes (TTM) [6, 7]
for the q profile shown in Fig. 3(a) with three adjacent resonant surfaces rs1, rs2 and rs3.
Here we consider the resistive case only (de = 0). Of particular interest is the evolution of
the m = 1 internal kink-tearing mode due to its global mode structure and its relevance
to internal disruptions (sawtooth crashes) in tokamak plasmas [15]. The data shown in
Figs. 3 and 4 were obtained using 256 modes (0 ≤ m ≤ 255). Although there are some
differences in detail, the overall features of the results presented in Ref. [7] (128 modes)
are reproduced.

4.1. Fast trigger for the m = 1 mode

Let us now examine the nonlinear evolution of the m = 1 mode shown in Fig. 3(b). After
the linear phase of growth [stage (i) in Fig. 3(b)] the growth rate of the m = 1 mode
increases significantly to a value that, in the present example, is an order of magnitude
larger than the linear growth rate [stage (ii) in Fig. 3(b)]. As mentioned in Section 3.2.,
this is due to nonlinear driving by fast growing high-mmodes. Nonlinear coupling between
mpeak and its immediate sidebands drives the m = 1 perturbation. Due to this enhanced
growth the m = 1 mode reaches an observable magnitude much faster than would be
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Figure 3: (a): Equilibrium q profile with three qs = 1 resonances and locally flattened profile just after
the kink flow reversal. (b): Evolution of the magnetic energy Emag of the m = 1 and m = 0 modes.

y 
/ a

0.5

0.25

0

x / a
−0.5 −0.25 0 0.25 0.5

−0.5

−0.25

0

x / a
−0.5 −0.25 0 0.25 0.5

(a) (b)

t = 950 t = 1050

kink flow kink flow

Figure 4: Potential contours showing the E × B flows before and after the nonlinear saturation of the
internal kink mode. Arrows indicate the instantaneous flow directions.

expected from its linear growth rate. Although the driving occurs only in a radially
localized region rs1 . r . rs3, the whole global m = 1 mode (0 ≤ r ≤ rs3) grows at an
enhanced rate. Therefore, it is proposed that this driving mechanism may explain the
fast trigger of the sawtooth crash [6], provided that multiple qs = 1 resonant surfaces are
present.

4.2. Saturation of the m = 1 mode

Since q < 1 in the region 0 < r < rs1 the entire core plasma can undergo magnetic
reconnection. In resistive RMHD simulations with monotonic q profiles (single qs = 1
resonant surface) this full reconnection seems to be inevitable [15], at least when pressure
effects and diamagnetic drifts are neglected [16]. In the presence of multiple qs = 1
resonances, however, partial reconnection may occur [6, 7]. Here, fast growing high-m
TTMs induce an annular collapse in the inter-resonance region rs1 . r . rs3 before
the global m = 1 mode can grow to a significant amplitude. The q profile is annularly
flattened and the following dynamics in the disrupted belt around the core is governed by
a burst of MHD turbulence. It has been shown that this turbulence is capable of changing
the direction of core displacement, impeding the growth of the m = 1 mode, and even
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making it decay [7]. An example for such a scenario is shown in Fig. 3(b): phase (iii)
indicates the annular collapse, (iv) the saturation and reversal of the kink flow, and (v)
resumption of the sawtooth crash. The snapshots in Fig. 4(a) and (b) were taken just
before and after the reversal of the kink flow. The simulation results have indicated that
motion of the kink sensitively depends on the initial perturbation and state of turbulence
in the disrupted region. As in the example in Fig. 3(b), at later times full reconnection is
usually observed (similar to a compound sawtooth crash [17]). The relevant point to be
made here is that there is a significant interaction between the global m = 1 mode and
the surrounding turbulent belt.

5. Discussion

In this paper, we have presented our recent results on current-driven MHD instabilities
near qmin in reversed-shear configurations. More specifically, based on an RMHD model
with electron inertia, collisional and collisionless high-m DTMs were studied. A better
understanding of DTMs may facilitate a better control of ERS tokamak discharges, where
an ITB is created near qmin and may provide the plasma with an access to the regime
of improved confinement [18]. DTMs may also play a significant role for disruptions or
disruption control [19]. Nonlinear interaction of the m = 1 internal kink mode with MHD
turbulence generated by high-m TTMs has also been examined. The simulation results
presented here provide possible mechanisms of certain features of sawtooth crashes, such
as sudden onset of the internal disruption and partial sawtooth crashes (e.g., Ref. [4]).

The simplicity of the RMHD model used in this study has allowed us to understand fun-
damental properties of tokamak plasmas in the presence of high-m MTMs in a relatively
simple manner. Inclusion of more realistic effects, such as neoclassical effects [20, 21] and
kinetic effects, is an important next step toward more quantitative prediction of nonlinear
dynamics of MTMs in tokamak plasmas.
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