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Current drive with oscillating magnetic fields

We investigate the use of oscillating helical magnetic fields to sustain the toroidal and
poloidal currents in a Reversed Field Pinch (RFP) [1]. This would allow continuous
operation and eliminate the need for the internal dynamo, thus improving the
confinement and the attractivness of the concept. Rotating magnetic fields (RMF) have
been proved effective in sustaining field reversed configurations (FRCs) [2] and small
spherical tokamaks [3]. In toroidal devices, where both poloidal and toroidal currents
are necessary, a natural extension of the RMF technique is the double helix scheme. In
this method, two sets of m=1 helical coils, wound around the plasma chamber and fed
by strong rf sources with a phase difference of �/2, are employed.

Previous analysis of the double helix method showed that the efficiency is very low in
tokamaks [4], where strong toroidal fields are present, but could be significantly higher
in RFPs, which have smaller toroidal fields [5]. The physical model employed is the
same as in [4]. It assumes fixed ions and uniform density and resistivity and employs a
non linear Ohms law, without thermal effects, for the electrons. However, instead of
looking for stationary solutions we solve the complete 2D time dependent equations that
describe the penetration of the helical fields and the generation of the poloidal and
toroidal currents.

We consider an infinite plasma column of radius a subject to the action of external
traveling magnetic fields varying as exp{i(�+kz-�t)}, and a uniform static longitudinal
magnetic field B0. All lengths are normalized with a and the magnetic field with B�

(amplitude of the helical field at the center of the column without plasma). Introducing
helical coordinates, x1=r/a, x2=�+kz and x3 ignorable, the problem becomes 2D and we
only need to calculate the third quasi-helical components of the dimensionless vector

potential ( 3Â ) and magnetic field (3B̂ ). Knowing 3Â  and 3B̂  we can obtain:
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The normalized equations depend on ���t, h (pitch of the helical windings),0B̂ (external

toroidal field), ���� 2/0
22 a�   and ��

�
enB /�  and are solved using a fourth order

Runge-Kutta scheme. Outside the plasma3B̂ is uniform but can be time dependent and

3Â  is determined by the currents in the plasma and the coils, which are assumed to be

very far from the plasma.

Two efficiencies [ )1()1();1( ������ xBxBxB zzz ��
�� ] and two synchronism

parameteres [ max,max, /;/
���

		 IIII zzz �� ] are introduced for the axial (toroidal)

and azimuthal (poloidal) driven currents respectively. The efficiencies measure how
efficiently the externally produced field B� is employed to drive the currents while the
synchronism parameters indicate how close we are to the maximum possible currents,
which are obtained when all the electrons move with the traveling helical field.

Fig. 1 shows a plot of the steady-state efficiencies and synchronism parameters as a
function of � for �=20, h=1 and B0=2. It is clear that while boths efficiencies have a
maximum around � =15.5, the synchronism parameters increase with � and become
unity when � is large enough. We note that since the cost of the method, in terms of the

power needed to drive the current in the helical coils, increases with 2
�

B  it may not be

feasible, or convenient, to increase B� (�) to the level required for maximum current.
Fig. 2 shows the steady-state magnetic field profiles (averaged over x2) obtained with
� =15.5 and the other parameters as in Fig. 1, together with the values of the pinch
parameters which are defined as:
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Where 	..
 means average over x2 and zB  is the volume average of Bz. It is clear that
reasonable magnetic field profiles and pinch parameters close to the experimental
values are obtained.
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Fig. 2. Magnetic field profiles
(normalized) and pinch parameteres
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Fig. 1. Efficiencies and synchronism
parameters as a function of �
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Table I shows the maximum efficiencies and the corresponding pinch parameters
obtained for other values of � and �. In all cases the value of the external magnetic field
was chosen to obtain pinch parameteres close to the experimental values. Note that for
constant density, � and � increase with the temperature if classical resistivity is
assumed.

� � 0B̂ �z,max ���max F �

5 3.5 0.5 1.68 3.08 -0.426 1.442

10 6.5 1 3.91 7.86 -0.347 1.356

20 15.5 2 6.99 13.96 -0.402 1.417

30 26.0 3 9.08 18.42 -0.492 1.496

Table I. Maximum values of �z and �� and pinch parameters for selected values of � and 0B̂ .

Fig. 3 shows a plot of the toroidal and
poloidal currents and the external
magnetic field as a function of time
for the same parameteres as in Fig. 1.
The time required to reach a steady-
state decreases with increasing �.

The results show that it is possible to
produce RFP like magnetic field
profiles with pinch parameters close
to the experimental values. The
efficiencies obtained for moderate
resistivity, and the observed scaling,
indicate that this could be a very
attractive method for high temperature
plasmas.

We study the effect of finite electron inertia on rotating magnetic field (RMF) current
drive in FRCs using a two fluid model [6]. The importance of inertial effects is
measured by the ratio between the RMF frequency (�) and the electron-ion collision
frequency (
). When �/
 is very small, previous results corresponding to massless
electrons are recovered.

Two situations are considered. The first one concerns the formation of a FRC by the
RMF and the second the application of a RMF to an existing FRC, with fixed or rotating
ions. Two different models are employed. In the first one (model I), the full radial and
azimuthal dependence of the axial components of the magnetic field and vector
potential are considered while in the second one (model II) only the averaged (over the
azimuthal angle) value is included for the axial magnetic field. The results are analyzed
by employing the efficiency (��) introduced above.
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We find that electron inertial effects could be important, depending on the plasma and
RMF parameters. When �/
 increases, the maximum efficiency decreases and the value
of � required to obtain this maximum increases. In addition, the penetration time also
increases. Since 
 decreases with increasing temperature and decreasing density, these
effects should become more important as fusion relevant temperatures are approached.
Fig. 4, obtained with model I, shows the efficiency as a function of time for �=5.75, �=5
and different values of  �/
 while Fig. 5, obtained with model II, shows the steady-state
efficiency as a function of � for �=50 and different values of  �/
.

Neutral beam injection in a D-3He Field Reversed Configuration reactor

Due to its high � (�
1) the Field Reversed Configuration (FRC) is ideally suited to burn
advanced fuels. A conceptual design of a D-3He FRC reactor partially sustained by
neutral beam injection (NBI) was proposed by Momota et al. [7]. Here we employ the
Monte Carlo code already used to study NBI into medium size FRCs [8] and
Spheromaks [9] operating with D to study NBI in a FRC reactor with parameters similar
to those quoted in the ARTEMIS [7] project. The code calculates the trajectories of
individual particles integrating the equations of motion and including collisions. The
exact orbits are calculated because the large Larmor radius of the energetic beam ions
prevents the use of gyro-averaging.

The FRC plasma consists of D ions, 3He ions and electrons, and it is assumed to be in
MHD equilibrium. Since the required beam current (8 MA) is a small fraction of the
total plasma current (200 MA) it is not necessary to calculate a self-consistent
equilibrium (including the beam current). The equilibria are obtained by solving the
Grad-Shafranov equation with the following functional dependence for the pressure:
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where G0 is a constant, �0 is the magnetic flux at the null and C is the “hollowness”
parameter. When C>0 the equilibrium is hollow and when C<0 it is peaked. The
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ARTEMIS design has a separatrix radius rs=112 cm and a length 2zs=1700 cm. The
beam is specified by indicating the energy of the neutral particles, the axial location
where the beam is injected, the injection angle and the impact parameter (b).

Figures 6 and 7 show the spatial distribution of the beam current density and deposited
power for a 5 A neutral beam injected at the midplane (z=0), with b=80 cm and
perpendicular to the FRC axis. The equilibrium is peaked (C=-10) and the plasma
parameteres are the similar to those used in [7], with the same external field and a
somewhat lower density (ne,max=6.4�1014 cm-3, Te=TD=THe=87.5 keV, r0
80cm, EBeam=1
MeV, Bext=6.7 T, nHe=nD/2). The total beam current obtained for this case is IBeam= 0.48
MA, much lower than the value quoted in [7]. If a hollow equilibrium (C=0.5), with the
same plasma parameters is employed a lower beam current (IBeam=0.31 MA) results.
This is due to the loss of particles through the ends of the FRC, which is very important
in this case.

Since the total beam current obtained for peaked and hollow equilibria is much lower
than the value quoted in [7] we calculate below the maximum current that could be
driven by the beam and discuss the effects that reduce it.

The distance traveled by a beam ion in a field free plasma with uniform density until it
thermalizes can be calculated as:

� �
du

dtdu

u
L

th

i

u

u
��

/
,

where ui is the initial ion velocity, udtdu s
��/  [10] and the slowing down collision

frequency, �s, must contain the contribution of the three plasma species. The maximum
current that could be driven by the beam can be estimated by dividing L by the length of
the ion orbit, which is approximately 2�r0. Using the parameters proposed in [7] we
obtained an amplification factor (L/2�r0) of 2.7�105, corresponding to a total current of
1.35 MA for a 5 A beam. This is substantially smaller than the value quoted in [7],
where it is assumed that 5 A of neutral beam current would produce 8 MA of plasma
current. A substantially larger, but incorrect, amplification factor is obtained calculating
the distance traveled by the ions as: L=ui/
0, where 
0 is the collision frequency
calculated with ui.
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 Fig. 7. Deposited beam power for
peaked equilibrium.

 Fig. 6. Beam current density for
peaked equilibrium.
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The current calculated with the code depends on the type of equilibrium considered
(higher for peaked than for hollow) but it is always lower than the 1.35 MA indicated
above. Since basically all the neutral beam particles get ionized there are two effects
that reduce the beam current:
a) A fraction of the ionized particles, approximately 18% for peaked and 62% for

hollow equilibria, is lost through the ends of the configuration before becoming
thermalized. These losses could be reduced adding magnetic mirrors.

b) Due to the particular magnetic field structure of FRCs, particles ionized close to the
separatrix end up rotating around the FRC axis in the counter-current sense.

Figure 8 shows the orbits of two particles which were ionized at different distance from
the FRC axis. Particle 1 rotates in the “positive” (current) sense, thus contributing to the
plasma current while particle 2 rotates in the “negative” sense, reducing the plasma
current. For the parameters proposed in [7] there are more particles rotating in the
negative sense (Npos/Nneg=0.88 for the peaked equilibrium used in Fig. 6) but their
azimuthal velocity is generally smaller than that of the particles rotating in the positive
sense and a positive beam current results (�Ipos/Ineg�=6.6).

The probability that particles become ionized at a given location and the amount of
current produced by these particles depend upon the plasma and beam parameters. To
find the impact parameter that results in the highest efficiency we removed the
collisions from the code (to speed up the computation) and calculated the current
produced in a fixed time for different values of b. A fixed time is needed because in the
collisionless case particles do not became thermalized. The assumption here is that
restoring collisions would not change the value of b that results in the highest
efficiency. We show, in Fig. 9, the current produced for different impact parameters in
the absence of collisions.  The highest current is obtained for b
0.725, smaller than the
null radius.
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 Fig. 9. Collisionless plasma current
as a function of impact parameter.
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In the low beam current regime considered here the beam plasma current increases
linearly with the neutral current and with the energy of the neutral particles. Since the
current produced with the plasma parameters proposed in [7] is very small, we tried to
find a set of parameters, not too different from the original ones, that would result in
higher current drive efficiencies. With EBeam=1.2 MeV, rs=106 cm, Bext=6.4 T,
Te=TD=THe=87.5 keV (ne,max=6.4�1014 cm-3) and a peaked equilibrium we obtained a
total beam current of IBeam=1.26 MA (for a 5 A beam). With these parameters, driving 8
MA of beam current would require approximately 32 A of NB current and an injected
power of about 38 MW.

Formation and sustainment of a flux core spheromak by DC helicity injection

The Versatile Advection Code (VAC) [11] is being employed to study the formation of
a flux core spheromak (FCS) and its sustainment by DC helicity injection. The code is
fully 3D (no Fourier decomposition) and solves the 3D resistive isothermal MHD
equations using a finite volume method. Fluxes are computed with a MUSCL TVD
method and Roe’s approximate Riemann solver. Initial studies, with fixed density (zero
beta limit), are aimed at testing the capability of the code to follow the evolution of an
unstable screw pinch until the FCS is formed and the effect of different boundary
conditions. The geometry and grid employed, which is uniform in the axial direction,
are shown in Fig. 10. The FCS is formed inside a cilindrical flux conserver in the
presence of an external axial field. Figure 11 presents  a sequence of poloidal flux
contours showing the initial screw pinch and the final FCS.

Fig. 10. Geometry and grid employed in the computations.
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Fig. 11. Sequence of contour plots showing the formation of a spheromak


