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Abstract. We investigate multi-scale-nonlinear interactions among micro-instabilities, macro-scale tearing insta-

bilities and zonal flows, by solving reduced two-fluid equations numerically. We find that the nonlinear interactions

of these instabilities trigger macro-scale MHD activity after an equilibrium is formed by a balance between the

micro-turbulence and zonal flow. This MHD activity breaks magnetic surfaces then this breaking spreads the

micro-turbulence over the plasma. These multi-scale-nonlinear interactions can explain the evolution of fluctua-

tion observed in torus plasma experiments because micro-turbulence and MHD instabilities usually appear in the

plasma at the same time, in spite of the fact that effects of micro-turbulence and MHD instabilities on plasma con-

finement have been investigated separately. For instance, MHD activities are observed in reversed shear tokamak

plasmas with a transport barrier related to zonal flows and micro-turbulence, and micro-turbulence is observed in

Large Helical Device plasmas that usually exhibit MHD activities.

1. Introduction

Effects of micro-turbulence and MHD instabilities on plasma confinement have been investi-
gated separately, but these instabilities usually appear in the plasma at the same time and inter-
act each other as shown in Fig. 1. For instance, MHD activities are observed in reversed shear
plasmas with a transport barrier related to zonal flows and micro-turbulence[1], and micro-
turbulence is observed in Large Helical Device plasmas that usually exhibit MHD activities[2].
Our goal is to understand the mechanism of the macro-scale MHD activities and their effects
on the disruption in the reversed shear plasmas based on the analysis of multi-scale-nonlinear
interactions among the micro-turbulence, macro-scale MHD and zonal flows.

A typical multi-scale interaction in magnetic confinement is a mutual interaction between
zonal flow and micro-turbulence[3]. This interaction is responsible to evaluate anomalous trans-
port due to the micro-turbulence[4]. Another typical example is the interaction of macro-MHD
with turbulence [5, 6, 7, 8, 9, 10]. This nonlinear mode coupling can be described by a negative
eddy viscosity[11, 12] or by an anomalous resistivity.

Micro-turbulence Zonal Flow

Macro-MHD

FIG. 1: Multi-scale-nonlinear interactions among micro-turbulence, macro-scale MHD, and
zonal flows
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In this paper, we investigate multi-scale-nonlinear interactions among micro-instabilities,
macro-scale tearing instabilities and zonal flows, by solving reduced two-fluid equations numer-
ically. We demonstrate numerically that the nonlinear interactions of these instabilities trigger
macro-scale MHD activity after an equilibrium is established by a balance between micro-
turbulence and zonal flow. This MHD activity spreads the micro-turbulence over the plasma
because it breaks magnetic surfaces. The new mechanism of macro-MHD activity can explain
the evolution of fluctuation observed in torus plasma experiments because micro-turbulence and
MHD instabilities usually appear in the plasma at the same time.

2. Equations and linear instabilities

We developed a new simulation code solving a reduced set of two-fluid equations that extends
the standard reduced two-fluid equations[13], by including temperature gradient effects[14, 15,
16]. We carry out three-dimensional simulations with this simulation code. By solving this
set of equations, we can describe the nonlinear evolution of tearing modes, interchange modes,
ballooning modes and ion temperature gradient modes. The equations are
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and +I� denote the normalized resistivity and the normalized viscosity, respectively. In the nu-
merical calculation we set +$�>
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As boundary conditions the plasma is assumed to be surrounded by a perfectly conducting wall.

Let us briefly describe the algorithm of our simulation code. The time advancement is made
with the predictor-corrector method and the radial derivative is approximated by the finite-
difference method. The Fourier decomposition is used in the poloidal and toroidal directions as?�
¥? ��� LOlHQ;��¦ �¨§ 6 ? �©§ 6@LOlY% � Q�ª�«�¬�LO­��2qJ�®­ � h�Q and #¯
b¦ �¨§ 6 # �¨§ 6VLOlY% � Q�ª�«�¬$LO­��2qJ�®­ � h�Q , where� and � are poloidal and toroidal mode numbers. In the numerical calculations we employ 256
poloidal modes, 128 toroidal modes, and 256 uniform grid points in the radial direction.



3 TH/P2-21

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

r/a

q
Neq
Teq

2

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

gr
ow

th
 r

at
e

n

growth rate

FIG. 2: Equilibrium profiles and growth rate of linear instabilities.

FIG. 3: The electric potential profile of eigen function on a poloidal section for instabilities:� 
0P double tearing mode, � 
BPY° and PR± micro-instabilities.

We checked the validity of our numerical simulation code by comparing with results by
other simulation codes. The Poisson-bracket term is compared with the corresponding term of
the code presented in Ref.[17]. The toroidal curvature term is compared with the corresponding
term of the code in Ref.[18]. The linear instabilities of ion temperature gradient modes and
kinetic ballooning modes are compared with those calculated in Ref.[16].

We examine the multi-scale-nonlinear interaction in a reversed shear plasma with
< 
²PR³ .

The equilibrium ´ profile is ´ 
 µa¶�·¸ ¶8¹ 
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plasma major radius and d is the plasma minor radius. In the numerical calculation we sete�
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ÂP [ ±	� , where | ( is Larmor radius. The equilibrium profiles of
density and temperature are �I��� 
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as drawn in Fig. 2. This equilibrium is unstable against the LO�U% � Q¨
ÅL�k�%ÆPRQ double tearing mode
because the q-profile has the ´ 
Çk resonant surfaces[19]. The equilibrium is also unstable
against the ¢DÈ � È~k	k kinetic ballooning instabilities[20], i.e. micro-instabilities, as shown
in Fig. 2. Notice that this tearing mode produces magnetic islands and that its growth rate is
small compared to that of the micro-instability. A ballooning structure of the micro-instability
appears in the bad curvature and positive shear region, as represented by the electric potential
profile in Fig. 3. The double tearing mode spreads between two resonant surfaces of ´ 
²k atl [HdMÉ ��¡¾½	± and 0.69 as shown in Fig. 3.
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FIG. 4: Time evolution of the electric potential on a poloidal section.

3. Multi-scale nonlinear interactions

We now present nonlinear simulation results. We start the nonlinear simulation at
� 
Ê� by

taking the result of the linear calculation as the initial condition. We fix the background profiles
of density and temperature, while we do not fix the q-profile. Figure 4 shows the electric
potential on a poloidal section at

� 
¥�7± , 60, 84, 144, 168, and 180, where the time is normalized
by the ion thermal transit time. Figure 5 shows time evolution of the magnetic energy for each
toroidal mode number � . The micro-instability induces zonal flow which has a stabilizing
effect on the micro-instability by shearing radial structure of the instability. This is observed in
Fig. 4 which presents the ballooning structure of the micro-instability is deformed by the flow
at
� 
¥¢	� . Then the system reaches to a quasi-steady state after the turbulence balances with the

zonal flow
��Ë ¢	� in Fig. 5. In this quasi-steady state, the �Ì
0k double tearing mode appears

and dominates the structure of electric potential at
� 
BPR¢	± and then the turbulence spreads over

the plasma at
� 
uPR±	� . We examine these subsequent multi-scale nonlinear interactions in the

following subsections in detail.

3.1. An equilibrium formed by a balance between micro-turbulence and zonal flow

We have strong nonlinear mode coupling represented by rapid growth of energy of high wave
number at

� Èf°H� in Fig. 5. A zonal flow with a L��U% � QÍ
~LO��%��7Q structure also appears through
the nonlinear mode coupling as indicated by the n=0 line in Fig. 5. The spatial profile of zonal
flow is shown in Fig. 6(a). The zonal flow is oscillating because of the geodesic acoustic mode
which is a mode-coupling between (m,n)=(0,0) flow and (m,n)=(1,0) pressure perturbation. This
zonal flow twists the radial structure of the micro-instability and suppresses the growth of the
instability. When this suppression balances with the turbulence due to the micro-instability the
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FIG. 5: Time evolution of the magnetic energy for each toroidal mode � .

system reaches to a steady state at
� 
²¢	� . This steady state continues until macro-MHD, i.e.

the tearing mode, appears at
� É PY°\� .

3.2. Nonlinear trigger of macro-MHD in the quasi-equilibrium

The energy of the L��U% � Q2
 L'k�%ÆPYQ tearing mode, i.e. macro-MHD, grows nonlinearly from� É PY°H� and dominates at
� É PYÎ	° in Fig. 5. The �Ï
vk structure appears correspondingly in

the spatial profile of electric potential at
� 
BPR¢	± in Fig. 4. The energy of the � 
b� perturbation

also increases in Fig. 5. This implies an alteration of magnetic field structure.
Let us investigate this � 
~P MHD mode in detail. Figure 7 shows the electric potential of

the � 
0P mode at
� 
f�7± , 60, 84, 144, 168, and 180. When the system reaches to a steady state

at
� 
B¢H� , the � 
vP mode appears, however, the spatial distribution of the electric potential at� 
0¢	� shown in Fig. 7 does not like the eigen function of double tearing mode in Fig. 3. This

is because the � 
sP mode is caused by a nonlinear mode coupling not by the free energy of
the equilibrium current density gradient. It seem that the radial structure is strongly twisted by
a shear flow at

� 
v¢	� and 84 in Fig. 7. We believe that the zonal flow induced by the micro-
instability has a stabilizing effect not only on the micro-turbulence but on the tearing mode
by twisting their radial structure. On the other hand, when the L��U% � Qj
ÌL'k�%ÆPYQ double tearing
mode appears and dominates at

� É PYÎH� in Figs. 4 and 5, this twisting vanishes and the spatial
distribution at

� 
ÐPR¢	± in Fig. 7 is similar to the eigen function of the double tearing mode in
Fig. 3. A possible mechanism of this vanishing of shearing is the Maxwell stress acting on the
poloidal flow. The stress is caused by the interaction between two magnetic islands chains[21],
and it can weaken the shearing to lock the phase of two islands chains.
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FIG. 6: (a) Spatial profile of zonal flow on a poloidal section. (b) Time evolution of zonal flow
profile along qÒ
b� axis on a poloidal section.

FIG. 7: Time evolution of the electric potential of � 

P mode on a poloidal section.
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3.3. Effect of tearing mode on micro-turbulence

The tearing mode affects the micro-turbulence because the tearing mode breaks the magnetic
surfaces through magnetic reconnections. This violation spreads the micro-turbulence over the
plasma after

� É PR±	� . The extension of the turbulent region is represented by the electric
potential profiles at

� 
0PR±	� in Fig. 4. This expansion is also observed in the evolution of zonal
flow profile at

�ÓË PR¢H� in Fig. 6(b). The violation also increases the energy of the turbulence as
indicated by the traces with � Ë P at

�ÍË PR±H� in Fig. 5.

4. Summary and Discussion

We have found that the multi-scale nonlinear interaction gives rise to macro-MHD activity,
which is a double tearing mode, after a quasi-steady equilibrium is formed by a balance between
the micro-turbulence and zonal flow. This appearance of the tearing modes can explain the
observation of macro-MHD activities in the experiment[1] that inherently includes turbulent
fluctuation and zonal flow. We have also found this macro-MHD spreads the micro-turbulence
due to the micro-instability over the plasma.

The mechanism of these interactions is as follows. At first, the toroidal-micro-instability
dominates the linear evolution, and then zonal flow, which suppresses the instability, appears
so that the system reaches to a quasi-steady state. The zonal flows also attempt to suppress the
double tearing mode. However, the fluctuation due to the nonlinear-mode-coupling overcomes
this suppression and produces the tearing mode in this quasi-steady state. This tearing mode
breaks the magnetic surfaces, and thus the tearing mode spreads the turbulence over the plasma.
The appearance of this non-ideal-macro-MHD activity due to nonlinear interactions can explain
the evolution of � 
BP fluctuation observed before the disruption of reversed shear plasmas[1].

Here we discuss effects of turbulent initial conditions and flowing initial equilibrium in
numerical simulations. We have obtained the quasi-steady state which is established by the
balance between the micro-turbulence and the zonal flow at ¢	�2È � ÈtPÆ�7� as shown in Fig. 5.
We believe this quasi-steady state is the equilibrium including flow and turbulent fluctuation.
Thus our numerical results involve these two effects and reveal a nonlinear destabilization of
the macro-MHD from turbulent initial fluctuation in a quasi-equilibrium which is formed by a
balance between the turbulence and zonal flow.

These multi-scale interactions are obtained by the numerical simulations with a reduced
two-fluid equations. We will solve another reduced two-fluid equations from the full two-fluid
equations in Ref.[22] and attempt to obtain general conclusion on the multi-scale nonlinear
interactions.
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