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Abstract. The microstability of MAST discharges L mode and H-mode discharges are analysed using the 
electromagnetic flux-tube GS2 code supported by interpretations using simpler analytic models. Analytic 
approaches are used to discuss effects of steep gradients and rotation shear, relevant to internal transport barriers. 
Nonlinear simulations of electron temperature gradient transport in MAST are compared with experiment. 
 
1. Introduction  
 
Spherical tokamaks (STs) have an aspect ratio R/a~1 (where R is the major radius and a is the 
minor radius) which is lower than in conventional devices where R/a~3. Among various ST 
experiments around the world, MAST at Culham carries ~1MA of plasma current. In ST 
experiments ion heat transport frequently lies close to the level predicted by neoclassical 
theory, and internal transport barriers in ion and electron channels have been reported. The 
NSTX experiment at PPPL has found that the dominant heat transport losses usually occur 
through the electron channel. It is important to ask whether these experimental observations 
can be understood theoretically. 
 
Microinstabilities are plasma perturbations with wavelengths perpendicular to the magnetic 
field approaching the ion or electron Larmor radius (ρi, and ρe respectively), and are widely 
believed to cause anomalous transport in magnetised plasmas. The gyrokinetic equations 
provide the appropriate mathematical model to describe microinstabilities, and are exploited 
in analytical and numerical calculations. ST geometry exaggerates properties of conventional 
tokamaks that have important influences on microstability. Studying microstability and 
microturbulence in STs: (i) contributes to testing and improving existing transport theories for 
tokamaks in challenging regimes, (ii) improves our understanding of microinstabilities in STs 
and (iii) assists the optimization of confinement in STs towards the goal of a burning plasma.  
 
There has been considerable interest over the appearance of internal transport barriers (ITBs) 
in tokamak plasmas, including in STs. ITBs enhance confinement by generating an insulating 
layer in the core region, and it is important to improve our understanding of their onset. 
Equilibrium plasma rotation is believed to be important in the generation of ITBs, and is 
therefore an important ingredient in models.              
 
Section 2 reviews the major findings from recent microstability analyses of ST plasmas using 
the GS2 code [1], and includes attempts to understand some of these results analytically. 
Section 3 discusses theories which have been developed to improve our understanding of 
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Figure 1: Growth rate of the fastest growing mode as a function of ky ρi for equilibrium quantities 
taken from the MAST (a) H-mode flux surface at ρn =0.4 and (b) L-mode flux surface ρn =0.5. (ρn is 
the normalised square root toroidal flux coordinate.) Results are presented with (open triangles) 
and without (open circles) the perturbed magnetic field. Black dots denote tearing parity modes. 

(a) 

ITBs, and the inclusion of equilibrium rotation in such calculations. Section 4 describes 
nonlinear microturbulence calculations to determine the transport arising from electron 
temperature gradient driven (ETG) turbulence in plasma conditions typical of the MAST 
experiment. Finally conclusions are presented in Section 5. 
 
2. Microinstabilities 
 
Gyrokinetic microstability calculations have been performed for plasmas which are typical of 
MAST [2,3] using the initial value GS2 code. GS2 has a domain that follows equilibrium 
magnetic field lines and comprises a narrow flux-tube of plasma. Microstability and 
turbulence calculations commonly include only the perturbed electrostatic potential, but GS2 
can also include the full magnetic perturbation. Equilibrium sheared flows are not included in 
GS2, and are likely to be important when equilibrium shearing rate ωse  becomes comparable 
with the maximum growth rate. Linearly GS2 computes the real frequency, ω, and growth 
rate, γ, of the fastest growing instability for a prescribed perpendicular wavelength ky, where 
the y direction lies perpendicular to the equilibrium field and in the magnetic flux surface, and 
x is the radial perpendicular direction.  
 
Microstability analyses have been performed for equilibria from the current flat-top of two 
similar sawtooth-free MAST discharges: an H-mode discharge #8500 and an L-mode 
discharge #8505. Profiles differ substantially between the L-mode and the H-mode equilibria: 
the L-mode has steeper density and pressure profiles in the core region but flatter in the edge. 
Several interesting observations emerged from these analyses.  
             

 
 
 
 
 
 
 
 
 
 

Including the self-consistent magnetic perturbation makes significant modifications to the 
fastest growing modes. Figure 1 shows the growth rate of the fastest growing mode as a 
function of ky for a core flux surface in each of these discharges. β~0.1 is moderate on both 
surfaces, and calculations have been performed with and without the magnetic perturbation 
δB. In the H-mode plasma when δB is included: at long wavelength (ky ρi <1) tearing parity 
instabilities dominate over electrostatic ion temperature gradient (ITG) driven modes (see 
Figure 1(a)) and rotate in the electron diamagnetic drift direction; and at short wavelength 
kyρe~O(1) the growth rates of ETG instabilities are modified. In the L-mode case the most 
striking impact of including electromagnetic effects is the emergence of strongly 
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Figure 2:  Maximum growth rate for modes 
with kyρi< 1 as a function of the electron β, 
βe with the vertical line showing the 
experimental value. (L-mode, ρn =0.5). 

electromagnetic twisting parity modes for kyρi<1. A 
scan in β (Figure 2) reveals that β sits close to the 
critical value for the onset of kinetic ballooning 
modes (KBM). MHD stability analysis suggests that 
this surface is just beyond the ideal ballooning 
boundary. ITG and ETG modes are generally 
predicted to be unstable (neglecting ωse). Trapped 
electrons have been found to be especially 
important for the modes in the region O(1/ρi ) < ky < 
O( 1/ρe ) in the L-mode plasma with steeper density 
gradient. Equilibrium flow shear ωse is dominated 
by sheared toroidal rotation in this region and this 
generally exceeds the growth rates of longer 
wavelength modes with ky ρi ≤O(1) (including ITG), 
but is less than the growth rates of short wavelength 
instabilities ky ρi > O(1)  (including ETG). Parallel 
analyses of NSTX plasmas (NSTX has similar parameters to MAST), also using GS2, give 
broadly similar findings. 
 
2.1 Microtearing Modes  
 
GS2 studies of microtearing modes in MAST equilibria [4] have probed the underlying 
drives. The analytic theory literature highlights two main drive mechanisms for the linear 
microtearing instability. The first drive mechanism which operates at higher collisionality 
υei>ω (where υei is the electron-ion collision frequency) is due to the time dependent thermal 
force driving parallel currents in the plasma, and the second drive mechanism which is more 
effective at lower collisionality is due to the effect of collisions between trapped and passing 
particles in a narrow layer of velocity space adjacent to the trapped-passing boundary. 
Significant parallel currents can be driven by these collisions and carried by the passing 
particles in this layer, allowing the microtearing instability to grow. Both mechanisms require 
a finite temperature gradient and an energy dependent collision operator to drive the 
microtearing instability. Importantly, our calculations using GS2 have shown that neither 
drive mechanism in the analytic theory literature is crucial to the MAST instability since the 
mode is largely unaffected when the energy dependence is removed from the collision 
operator (see Figure 3(a)). Significantly this suggests there must be a further drive mechanism 
for the microtearing instability. More detailed studies show that the microtearing mode is 
strongly destabilised by magnetic drifts and the electrostatic potential (see Figure 3(b)). If 
both of these effects (which are often omitted from analytic theories) are neglected in the 
calculations, then the MAST instability is completely stabilised. The MAST microtearing 
mode is unstable in the collisionality range 0.05 < υei/ω < 1.2, which is an awkward limit for 
analytic theory since it lies somewhere between the low collisionality and semi-collisional 
regimes. Analytic treatment of this mode would be further complicated by the width of the 
current layer which is the order of the ion Larmor radius, requiring that finite Larmor radius 
effects be included both inside and outside the current layer.  
 
Microtearing modes have also been found in GS2 calculations for large aspect ratio s-α 
equilibria at high β. High β enhances the magnetic perturbations that cause the tearing 
instability and suppresses the ITG mode. Preliminary nonlinear simulations to study the 
saturation of these instabilities fail to reach saturation due to strongly growing amplitudes of 
the highest kx modes resolved. An explanation for this nonlinear instability is yet to be found. 
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2.2 Ubiquitous Modes 
 

(a) (b) (c)  
Figure 4: Electrostatic calculation showing γ/ω∗e (where ω∗e /ω∗i corresponds to the electron/ion 
diamagnetic frequency) versus ky ρi for various choices of ηi (a) with adiabatic electrons and (b) 
including the full electron response. (c) shows the real frequency spectrum corresponding to the 
calculations shown in (b). 

Simpler electrostatic calculations have been performed in the region kyρi ≤O(1) for the MAST 
equilibrium of Fig 1(b), to approach the validity domains of analytic theories, and to study 
mode sensitivity to the profile parameters ηj=dlnTj/dlnnj (where j labels the species). 
Assuming an adiabatic response by electrons, instabilities are found with ηi ~2. These modes 
resemble toroidal ITG modes: self-consistent scans (Fig 4(a)) reveal that the mode, which 
generally propagates in the ion diamagnetic drift direction, is stabilised as ηi falls below 2. On 
including the full electron response however (see Figs 4(b),(c)), an instability, which now 
propagates in the electron diamagnetic drift direction, appears as ηi is reduced. This mode is 
influenced both by trapped electron physics and by ion temperature gradients (ηi >0). For 
sufficiently positive values of ηi (ηi ≥0.5) the real frequency of the mode (Fig 4(c)) rises with 
kyρi, and passes through zero close to the peak in γ/ω∗e. The transition from an electron drift 
mode to a mode propagating in the ion diamagnetic direction was noted in [5], where the ion 
mode was termed the ubiquitous mode. In the low frequency transition region the mode is a 
fluid instability driven by ion and electron magnetic drifts in the adverse curvature region. It 
is closely related to the toroidal ion pressure gradient driven mode, but no longer requires ion 
temperature gradients to destabilise it, though positive ηi still contributes to instability. 

Figure 3: (a) Plots of growth rate γ versus the thermal electron collision rate υei with (+) and without 
(∗) energy dependence in the collision operator. (b) Plots of γ versus υei using various physics models: 
full physics (+), neglecting the elecrostatic perturbation (∗), and finally a model without magnetic 
drifts (�). If both elecrostatic perturbations and magnetic curvature are ignored then the mode is 
completely stabilised. 

(a) (b) 
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3. ITBs and Rotation 
 
3.1 Trapped electron modes in steep plasma profiles 
 
The trapped electron mode can be destabilised by collisions or precessional drift resonances, 
but the latter effect will be exponentially small in steep density gradients, such as at an 
internal transport barrier (ITB). In the collisional regime there is an unstable dissipative 
trapped electron mode (DTEM) for all ηe, but at low collisionalities, using a simple Krook 
collision operator, one finds stability at long wavelengths (b=(kyρi)2<< 1) for positive ηe. We 
explore this transition using a pitch-angle scattering collision operator with energy dependent 
collision frequency, υe ~ v-3. Magnetic drifts and ion sound effects are neglected, ion FLR 
effects are retained; to obtain a tractable solution for all collision frequencies we model 
bounce-averages for trapped particles assuming they are deeply trapped and use a flute-like 
approximation for the perturbation. In the absence of collisions there is a discontinuity 
between trapped and passing electron populations (the non-adiabatic contribution to the 
passing distribution is small because of rapid parallel motion), but collisions resolve this 
boundary layer. As a result of these approximations one can calculate the perturbed electron 
density [6]. 
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Equating this to the ion response provides a dispersion relation involving the principle 
parameters ( e n thiˆ L / vν = ν ,b, ηe, ηi). At low collisionalities one uses an expansion in υe/ω << 1 
to obtain  
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implying stability for b < bcrit (ηe).  However numerical evaluation leads to the stable region 

 
 
in the ν̂ -b plane shown in Fig. 5(a): the stable region increases with ηe, but decreases, less 
slowly, with ηi. Below a critical value ν̂  ~ 2-3 10-2, there is an onset of a stable band of long 
wavelengths. The fact that this region narrows from the result (2) is because: on the right, the 
energy dependence of υe(v) means in some part of the integral (1), υe(v)/ω is in the dissipative 

(a) (b) (c)
Figure 5 (a) Critical  ν̂ (b); numerical (dots), asymptotic limits (lines); vertical line is given by 
eqn.(2); (b) Variation of D̂ with collisionality, ν̂ ; D̂ reduces sharply at small ν̂ ; (c) 
Experimental values of ˆ1 / ν in a MAST ITB 
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regime, while on the left this occurs because ω ∝ b1/2< υe. The analytic curve on the right 
hand side of Fig 5(a) is obtained by evaluating the integral (1) using asymptotic analysis in 
υe(vthe)/ω; the left hand curve corresponds to ω = υe. 
 
It is interesting to estimate the quasi-linear particle flux associated with this instability [7]. 
Integrating the contribution from the range bmin(n=1) < b < bmax = 1/2 (the result is relatively 
insensitive to bmax) one finds a collisionality dependence shown in Fig 5(b) (the diffusion 
coefficient D is normalised to a Bohm-like D0 ~ rρscs/L n). Interestingly the stabilising effect 
of ηe would imply peaked density profiles. Finally we note that the critical value ν̂  ~ 2-3 10-2 
is close to that obtained for MAST ITBs, see Fig 5(c). GS2 is being used to investigate further 
this possible explanation for ITBs in MAST. 
 
3.2 Effect of Sheared Rotation 
 
The collisional transport matrix for a low collisionality plasma with collisional impurity ions 
has been calculated. The impurities have been found to give rise to off-diagonal terms which 
can cause the plasma to rotate spontaneously. At conventional aspect ratio the angular 
momentum flux due to pressure and temperature gradients increases by a factor (R/a)3/2 over 
previous predictions [8]. It is anticipated that in STs, and for ITBs generally, rotation shear, 
Ωq = dΩ/dq, may affect the stability of longer wavelength modes. This problem can be studied 
using the wave-number representation [9,10] for the perturbation φ(x, k). We consider a 
generic model where the lowest order solution of the ballooning equation provides a local 
eigenvalue for the Doppler-shifted frequency ω [9]   
 ω –nΩ(x) =λ (x, k) = ω0 – ω1x2/Lω

2 + iγ0 – iγ1x2/Lγ
2 + ε ω0 cosk  (3) 

where ε, Lω, and Lγ represent toroidicity and the scale-lengths for the variations in the local ω 
and γ, respectively. This approach reduces the stability problem to the solution of  
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i.e. Λ2 = Λ0
2exp(-iα), ε1 = ε0exp(iδ), with Λ0>> 1, where the global eigenvalue, ω, is given by 

requiring periodicity of the solution in k [10]. This equation has solutions of two types: the 
conventional ballooning modes localised near k = 0 for small ωq, and ‘passing’ ones above a 
critical value of ωq. Using asymptotic matching techniques one can derive analytic formulae 
to explore this transition. General features of the solution of the dispersion relation are evident 
analytically. There is normally a continuous evolution of the mode and its complex frequency 
from the conventional ballooning mode at zero flow shear to a passing mode at high flow 
shear. The latter mode is essentially cylindrical in its nature, toroidal effects being averaged 
out by flow shear: consequently it is more stable. The transition becomes sharper as Λ0 (i.e. n) 
increases, defining a critical value: 1/n~/Λ2ε~ω 2

01
crit
q

. The degree of stabilisation of a 
particular harmonic, p, of the conventional mode depends on which harmonic,l , of the 
passing modes it links to, the higher harmonics of the latter being more stable. As numerical 
solutions show, this is a complex question depending on model parameters, e.g. the phase-
angle α. Specific numerical results have been obtained for three special cases. The first is 
where the radial variation is due entirely to the growth rate (α = 0) and the toroidal coupling is 
in phase with the lowest order frequency, δ = -π/2 (the last condition is typical of drift waves).  
This shows that the most unstable (p = 0) harmonic of the conventional ballooning mode 
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(a) (b) 

Figure 7: Nonlinear ETG simulations for MAST #6252 at ψn= 0.4. (a) 
Electron thermal diffusivity as a function of time for various flux-tube 
resolutions. (b) Contour plot of electrostatic potential in the x y plane at 
the intersection of the flux-tube with the outboard equatorial mid-plane.

Figure 6: Variation of the normalised 
growth rate, γ/ω0, with increasing flow 
shear, ωq , for the lowest, most unstable, 
conventional ballooning mode harmonic, 
p=0, for the standard case: Λ0

2= 
15,ε0=2,α=π/8, δ=-π/2, γ0/ω0=1. In this 
case p=0 evolves into the most unstable 
passing harmonic 18= −l . The red 
curve from the left matches the green 
curve from the right in an overlap region 
of common validity. 
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becomes the more stable passing mode ( l  = 0 – i.e. with zero real frequency but the most 
unstable passing mode) as ωq increases. The second and third harmonics first coalesce and 
then acquire real frequencies corresponding to 1= ±l  as they evolve to the more stable 
passing modes. The second limiting case is when 
the radial variation is in the real frequency, α=π/4, 
but δ=-π/2 again. In this case the conventional 
ballooning modes are essentially unaffected by ωq 
but the real frequency of the passing modes at zero 
ωq evolves so as to coalesce with neighbouring ones 
before returning in a cyclic manner. However this 
behaviour is not robust to a small change in α: the 
real parts then evolve without bound. Finally in 
Figure 6 we show the variation of growth rate for an 
intermediate case: α = π/8, δ = -π/4 where both ω 
and γ vary radially. In this case the lowest harmonic 
conventional modes link to passing modes with high 
values of l  (and hence are the more stable), 
whereas it is a higher harmonic that links to the 
most unstable passing mode, l =0.  
 
This analysis suggests that rotation shear can be 
included in GS2 by allowing the ballooning angle θ0 
to rotate in time and calculating the time-averaged 
growth. 
 
4. Nonlinear ETG 
 
Nonlinear calculations are required to predict transport arising from microinstabilities. ITG 
modes are likely to be damped by equilibrium flow shear in MAST as ωse > γITG, but ETG 
modes should be less affected. GS2’s geometry is most appropriate if the flux-tube is 
sufficiently thin in radius that the equilibrium gradient scale-lengths can be taken as constant.  
For these reasons nonlinear 
GS2 turbulence calculations 
[11] have focussed on ETG 
modes. As electromagnetic 
effects are important at 
mid-radius in MAST, they 
are therefore included. 
Calculations have been 
undertaken to assess the 
impact of ETG turbulence 
on the ψn = 0.4 surface (ψn 
is the normalised poloidal 
flux) of a MAST H-mode 
discharge (#6252). These 
nonlinear computations 
were carried out on the 
HPCx (Daresbury, UK) and Cheetah (Oak Ridge, US) supercomputers and typically take 4-8 
wall clock hours on 256 processors. The flux-tube extends 7m along the field line and has 
perpendicular dimensions x=690ρe and y=628ρe, where ρe=0.12mm. The grid in y resolves 
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wavenumbers in the range 0.01≤ kyρe≤0.31, which includes the most linearly unstable modes. 
Saturation of the heat flux was observed after t = 200a/vthe, and the electron thermal 
diffusivity χe was calculated to be ~5m2/s. Convergence has been checked by assessing the 
sensitivity of the predicted electron heat flux to (i) resolutions in x and y (see Figure 7(a)), (ii) 
including or excluding electron collisions, and (iii) comparing adiabatic ions with including 
full ion physics. These variations affected the saturated electron transport coefficient by less 
than a factor of two. The predicted electron thermal diffusivity is much larger than the mixing 
length estimate (χe

ML < 0.03m2/s). Experimental measurements indicate that χe lies in the 
range 3-8 m2/s in this region. The GS2 predicted electron thermal diffusivity is experimentally 
significant, and the enhancement over mixing length predictions appears to be due to the 
existence of large amplitude, radially elongated streamer structures which are clearly visible 
in Figure 7(b). More recent work suggests that saturation level of the ETG turbulence is 
sensitive to the inclusion of trapped electron physics [12]. 
   
5. Conclusions 
 
The GS2 code, supported by analytic models has been used to identify the instabilities present 
in the spherical tokamak, device MAST, in particular exploring the effects of high β. Micro-
tearing, ITG, ETG, trapped electron modes and the ubiquitous instabilities have been 
identified. Generic modelling of rotation shear suggests an approach to including it in GS2. 
Simulations of ETG transport are compatible with χe in MAST. 
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