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Abstract. The response to perturbations of a simplified transport model is studied. The model
is used as a paradigmatic example of transport controlled by a critical gradient. Long-time
system behaviour is diffusive when most of the system is sub-critical. However, when the critical
mechanism becomes significant, it is observed to dominate the system behaviour at both short
and long time scales. While the pulse amplitude decays in an approximately diffusive manner at
long times for weakly critical situations, the pulse shape is not self-similar and cannot be
modelled using a single transport exponent.

1. Introduction

In recent work [1-6] we have designed a simplified model for transport in fusion plasmas, based
on the Continuous Time Random Walk (CTRW) formalism [7,8], which incorporates a critical
gradient mechanism. It was shown to reproduce much of the unusual phenomenology observed
in actual fusion experiments (power degradation, profile stiffness, rapid propagation of
perturbations, uphill transport), which is the prime reason for continued study of this particular
model. Moreover, the model provides a test-bed for advancing understanding of the critical
gradient mechanism, central to many models for transport in fusion plasmas in view of ample
supportive experimental evidence [9-13]. This feature is explored in the present work, in which
the response of the model to localized perturbations is studied.

2. The model

The model is described in considerable detail elsewhere and the reader is referred to the cited
references for more information. Here we note only that the simplified model is Markovian in
nature and that the time evolution of the single field n(x,t), which may be interpreted as a
(particle) density, can be described, in one dimension, by a Generalized Master Equation:
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The domain of the system is 0 ≤ x ≤ 1. τD = 1 is a “waiting time” and S(x) a source (taken
constant in time), needed to compensate edge losses associated with the absorbing boundary
conditions imposed at x = 0, 1. The function p  is a “particle step distribution”. Standard
diffusion is recovered with a Gaussian step distribution, p(x–x’,x’,t) = G(x–x’,σ) =
exp[–(x–x’)2/4σ2] / 2σ √ π  in the limit of small σ k  (k  being the wave-vector): i.e.
∂n/∂t = ∂2/∂x2[σ2n/τD] + S. Thus, the model is closely related to standard transport models in
common use, while allowing a critical mechanism to be incorporated in a mathematically sound
way (cf. the cited references).

For the present study, the most important element of the model is the step distribution p,
which is chosen as follows to produce the required critical gradient mechanism:

|∇n| < [∇n]crit: sub-critical or “normal” transport; p = p0
|∇n| ≥ [∇n]crit: super-critical or “anomalous” transport; p = p1

Here, p0 and p1 are fixed and symmetric stable probability distributions (of the Lévy type, of
which the Gaussian is a special case). Transport at any given location x will therefore be normal
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or anomalous as a function of the local value of the density gradient. This introduces a
mechanism for self-regulation into the model.

3. Numerical studies

The numerical calculations are performed on a grid with N = 2000 grid points (0 ≤ x ≤ 1), using
standard integration techniques for stiff differential equations to advance Eq. (1) in time [14].
The source S(x) = S0 is taken constant.

Throughout this paper, we set p0 = G(x–x’,σ0) with σ0 = 0.002, while p1 = G(x–x’,σ1)
with σ1 = 0.008 for the cases labelled “Gauss-Gauss” (both transport channels are Gaussian),
or p1 = C(x–x’,σ1) = σ1/π(σ1

2+(x–x’)2) with σ1 = 0.004 for the cases labelled “Gauss-Cauchy”
(sub-critical transport Gaussian, super-critical transport Cauchy). The critical gradient is chosen
[∇n]crit = 2000.

3.1 Gauss-Gauss; negative perturbation

The source rate was varied in the range 0.01 ≤ S0 ≤ 10. In this range, the system transits from a
sub-critical to a super-critical situation, analogous to what has been reported in Ref. [1]. Steady
state profiles are shown in Fig. 1 for the Gauss-Gauss case. At S0 = 0.01, the profile is parabolic
and the system is sub-critical (purely diffusive). In the range 0.05 ≤ S0 ≤ 1, ever larger parts of
the profile are critical, as is evident from the sections with constant gradient in the profiles. At
S0 = 10, the profile is parabolic again, and thus dominantly super-critical.

To probe the reaction of the system to negative perturbations, we multiply the steady state
profile n(x,0) by the factor

f(x) = (1–exp[–(x–x0)
2/2w2])(1–exp[–(x–1+x0)

2/2w2]) (2)
with w = 0.005 and x0 = 0.125. This way, the profile is perturbed by a double narrow negative
density pulse centred at x0 and 1–x0. Then, the evolution of this perturbation is followed in time.
Figs. 2 and 3 show the initial evolution of the perturbation (shown is the profile ñ(x,t) = n(x,t)-
n(x,0), where t=0 corresponds to a time immediately previous to the density perturbation at
t=0.11). We note that the negative density perturbation produces a small-amplitude positive
perturbation that propagates outward from the locations of the perturbation in a nearly ballistic
fashion (at constant speed). The formation of these positive perturbations is related to flux
accumulation between zones with super-critical (fast) and sub-critical (slow) transport. Between
times t = 3 and 4, the ballistic propagation of the front halts and further evolution is mostly
diffusive in nature. We conclude that the model shows two modes of propagation: a ballistic
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Fig. 1 – Steady-state profiles of n(x), normalized
by √S0 for display purposes, for various values
of S0.

Fig. 2 – Initial time
evolution of the negative
density perturbation ñ(x,t)
at S0 = 0.01.
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propagation of the perturbation front (cf. Ref. [15]), associated with the criticality mechanism
(i.e. the profile stiffness), and normal diffusive behaviour that takes over as soon as the gradients
drop to around or below the critical value. Evidently, in the small amplitude limit of the
perturbation, the model would respond purely diffusively in this case (without pulse fronts).

This observation leads us to expect the long-time behaviour of the model to be diffusive
in this (sub-critical) case. Fig. 4 shows the long-time behaviour of the perturbation. Indeed, the
negative perturbation spreads out and becomes shallower in a diffusive manner, and no drifts
(associated with convection) in the position of the negative perturbations are apparent.
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Fig. 3 – The first few profiles of ñ(x,t) shown in
Fig. 2, around the point 1–x0, at the indicated
times t, showing the gradual formation of the
positive perturbation fronts.

Fig. 4 – Long- time behaviour of the density
perturbation ñ(x,t) shown in Fig. 2. (Same
colour scale as Fig. 2.)

To quantify the long-time evolution, we note that the density perturbation at the position
of the initial perturbation x0 is expected to behave like

€ 

− ˜ n (x0,t) ≅ ct−1/α
(3)

where the exponent α is associated to the transport mechanism, α  being 2 for a Gaussian
(diffusive) process. Fig. 5 shows this quantity, along with a fit to Eq. (3) for the long-time
behaviour. The fit is consistent with α = 2. Also note the initial transient for small t (t ≤ 4),
associated with the observation reported in Figs. 2-3.

A second diagnostic of the long-time properties of the perturbations is to determine, for a
given position x, the time tM at which the negative perturbation is maximum (excluding times in
the initial transient range, t ≤ 10). This time is expected to scale like

tM = cM |x-x0|
α (4)
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Fig. 5 – Time evolution of –ñ(x0,t) and fit at
long times (dashed line: ñ ∝ t-0.540), at S0 = 0.01.

Fig. 6 – Time tM of the maximum negative
perturbation vs. distance from the initial
perturbation |x–x0|, and fit (dashed line: |x–x0|
∝ tM

0.455), at S0 = 0.01.
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This analysis is performed in Fig. 6 for the inward travelling part of the perturbation (the
outward part being distorted by the presence of the system boundary). We obtain α ≈ 2.2,
reasonably close to expectation, considering that full convergence to the asymptote would
require a longer experiment (and much CPU time).

A repetition of the experiment at increasing values of S0 is shown in Fig. 7. The cases S0
= 0.01, 0.02 and 0.05 are qualitatively very similar, although the positive perturbation front is
ever more important, related to the increased stiffness of the profile (quantifiable using e.g. the
criterion of Ref. [16]). A qualitative change occurs at S0 = 0.1, the first case at which the
perturbed location is critical. Nearly instantaneous communication of the perturbation across the
critical region is observed, and the positive front is generated inside the innermost critical
position. At S0 = 0.2, most of the profile is critical and the effect of the perturbation is
communicated nearly instantaneously over the whole system. Subsequently, very complex
behaviour is observed. At S0 = 0.5, this instantaneous system-wide communication is maintained,
but dynamics are simplified due to extreme stiffness in the region between the centre and the
perturbation. The observed behaviour is certainly not describable by any simple diffusive model.

Fig. 7 – Negative perturbation, Gauss-Gauss; (left to right, top to bottom): S0 = 0.01, 0.02, 0.05;
0.1, 0.2, 0.5. (Same colour scale as Fig. 2.)

Due to the fact that the centre of the negative pulse now exhibits a drift in time, the diagnostic of
Eq. (3) must be adapted: instead of determining the temporal evolution of ñ at x0, we determine it
at the position of the minimum of ñ for every time t. The resulting curves are shown in Fig. 8.
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Fig. 8 – Evolution in time of –min(ñ) in the
range (0.65 ≤ x ≤ 1).

Fig. 9 – Time tM of the maximum negative
perturbation vs. distance from the initial
perturbation |x–x0|.
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It shows that at low values of S0, the system behaves diffusively (the amplitude decays like  t–1/2)
for large t, while at S0 ≥ 0.05, the decay is much more rapid due to stiffness; the restoration of
the gradient to its critical value is at least exponentially fast. Fig. 9 shows the evolution of the
position of the maximum negative perturbation. This diagnostic does not work well when the
propagation is not simple (i.e. when stiffness effects are important), so results are only given for
the low S0 cases.

Fig. 10 – Negative perturbation, Gauss-Cauchy; (left to right, top to bottom): S0 = 0.01, 0.02,
0.05; 0.1, 0.2.

3.2 Gauss-Cauchy; negative perturbation

The series of experiments is repeated for the Gauss-Cauchy case. Super-critical transport is now
qualitatively different (i.e. long-range). Fig. 10 shows the initial time evolution of the
perturbation. The figure is quite similar to Fig. 7, except for two points: the separation of the
positive pulse generating point from x0 occurs already for S0 = 0.05 (in accordance with the
greater extent of the critical region), while the system is already critical over the full radius in the
case S0 = 0.2. Both these effects can be attributed to increased system stiffness, due to the
increased transport capacity of the super-critical transport channel.

The analysis of transport exponents is shown in Figs. 11 and 12. In Fig. 11, only the
lowest fuelling level (S0 = 0.01) shows asymptotic diffusive behaviour. Higher fuelling levels
show a decay of the perturbation that is at least exponentially fast. The analysis shown in Fig. 12
does not allow the determination of a useful transport exponent.
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Fig. 11 – Evolution in time of –min(ñ) in the
range (0.65 ≤ x ≤ 1).

Fig. 12 – Time tM of the maximum negative
perturbation vs. distance from the initial
perturbation |x–x0|.
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3.3 Gauss-Gauss; positive perturbation

To probe the reaction of the system to a central positive perturbation, we multiply the steady state
profile n(x,0) by the factor

f(x) = (1+ε exp[–(x–x0)
2/2w2]) (5)

with ε = 0.25, and x0 = 0.5. This produces a single positive perturbation at the system centre with
width w. Some examples of the initial evolution are shown in Fig. 13, for a sub-critical and a
critical case, and various values of w.

Fig. 13 – Positive perturbation, Gauss-Gauss;
(top left): S0 = 0.01, w = 0.005.
(bottom, left to right): S0 = 0.2, w = 0.005, 0.01, 0.02.

The analysis of transport exponents is shown in Fig. 14. For sufficiently low values of
S0 (S0 =0.01), the behaviour is diffusive after an initial transient. However, for high values of S0
(S0 =0.2), relaxation does not occur on the timescales studied, and therefore no transport
exponent could be determined.
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Fig. 14 – Evolution in time of ñ(x0,t). Fig. 15 – Renormalised pulse shape at various
times. S0 = 0.2, w = 0.005.

In view of the observed complexity of the transport behaviour, we pose the question whether the
profile evolution is at all self-similar for times greater than the initial transient time. If that were
the case, then the evolution could still be described by a single transport exponent, in spite of its
complexity. To answer this question, we plot the renormalized perturbation:

F(X,t) = ñ(x,t)/ñ(x0,t), with X = ñ(x0,t)(x-x0) (6)
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This quantity is shown for various times in Fig. 15 for the case S0 = 0.2, w = 0.005. The centre
of the pulse is nearly self-similar, but at increasing times the wings are narrower than one would
expect from the central decay. The absence of self-similarity means that the evolution cannot be
described by any single transport exponent. It should be noted that the central decay rate alone
(Fig. 14) might suggests a simple scaling behaviour for long times, so that one might be tempted
to model the system using (fractional) differential equations, but the self-similarity test shows
that this is an unsatisfactory description of the overall behaviour. Caution is therefore needed
when analysing measurements made on critical systems, since the central decay rate is what
typically might be obtained from a low-resolution measurement of pulse propagation.

4. Conclusions

To understand transport in systems controlled by a critical gradient, believed to be relevant for
transport in fusion devices, the response to perturbations was studied in a simplified numerical
model. The comparison between the cases Gauss-Gauss and Gauss-Cauchy reveals that the
nature of the super-critical transport channel (Gauss or Cauchy) has little influence on the
propagation of the perturbations, which is very similar in both sets of cases. Thus, the critical
mechanism dominates the behaviour of the system.

The long-time behaviour of the system, as measured using two related techniques, is
mostly diffusive at low fuelling rates, regardless of the case type; while no single transport
exponent can describe the behaviour at high fuelling rates. However, on short timescales, the
system behaviour is extremely non-diffusive in all cases, showing rapid (“ballistic” or even
“instantaneous”) propagation and perturbation sign reversal. A self-similarity test of the pulse
shape confirms that the long-range behaviour is non-diffusive at high fuelling rates and cannot
even be characterised by a single transport exponent, eliminating any hope of modelling these
systems using a single effective (fractional) diffusive operator. The origin of this behaviour must
be sought in the stiffness properties of the system.

The observations presented here, reported for simulations performed using a simplified
transport model, are believed to be relevant to the understanding of transport (and of the
propagation of perturbations) in fusion devices, where critical mechanisms are thought to be
operative and profile stiffness is often observed.
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