
1 TH/P2-16

Nonlinear Inward Particle Flux in Trapped Electron Turbulence

P.W. Terry 1), R. Gatto 2), D.A. Baver 1), and S. Gupta 1)

1) University of Wisconsin, Madison, WI 53706 USA
2) Universita di Roma “Tor Vergata”, 00133 Rome, Italy

e-mail contact of main author: pwterry@wisc.edu

Abstract: Weakly collisional trapped electron mode (TEM) turbulence has a robust inward particle flux compo-
nent associated with a linearly stable eigenmode that is excited nonlinearly by spectral energy transfer from the
unstable TEM mode. The nonlinear mixture of the two eigenmodes achieved in saturation cannot be described by
the quasilinear approximation, hence the inward flux component, which combines with the outward quasilinear
flux to produce the net flux, is fundamentally nonlinear. The net flux, which remains outward but is significantly
reduced by the inward component, depends on the gradients of density and temperature. This dependence, which
establishes whether the flux is diffusive, convective, or something else, is sensitive to the details of the saturation.
Saturation is calculated asymptotically in an ordered expansion in collisionality and the ratio of density to tem-
perature gradient scale length. Spectral transfer is highly anisotropic and saturation must account for the energy
transfer to zonal modes with zero poloidal wavenumber. Even though zonal modes do not contribute directly to
the particle flux they change the fluctuation level and gradient scaling of both the unstable and stable eigenmodes.
The result is a flux that is neither diffusive nor convective, but is driven by temperature gradient and enhanced
by density gradients that are flat or nearly so. Near the instability threshold the inward component is particularly
strong.

1. Introduction

Inward particle transport in tokamaks is important for achieving desirable density profiles in
discharges without a significant core particle source. In ITER a centrally peaked density profile
is favorable for fusion. Yet other considerations make it preferable to heat the plasma withrf
waves, which provide no central fueling. Under these circumstances, processes that lead to
inward particle transport are of interest. An inward particle fluxes can have various density
gradient scalings. Moreover, an inward flux generally accompanies some form of outward
transport with its own density gradient scaling. The relative magnitude of these components
varies, and depending on circumstances, can be greater or lesser than unity.

The first inward flux discovered was a neoclassical effect [1]. Subsequent work showed that
turbulence drives inward particle transport under certain conditions. Anomalous inward fluxes
operate through additional free energy sources. It was shown that ion temperature gradient in-
stability can produce an inward flux in collisional plasmas [2]. This was subsequently extended
to collisionless regimes [3]. The gradient of the safety factor drives a second class of pinch
mechanisms through adiabatic invariance [4]. Presently the particle transport in experimental
discharges is interpreted using these types of inward transport models [5]-[6].

A striking aspect of the conceptual formulation of inward transport mechanisms is the reliance
on quasilinear theory. In quasilinear theory the phase between the electron density and the
potential is assumed to be given by a linearized density response. In collisional regimes this
assumption is reasonable because the collisional effect is linear, and it dominates the response.
In collisionless or weakly collisional regimes the density response can become highly nonlin-
ear. This happens in the hydrodynamic regime of the Hasegawa-Wakatani equation. There is
an analogous regime in fluid models of trapped electron mode (TEM) turbulence [7]. When
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the electron density response becomes nonlinear, particle transport is no longer adequately
approximated by quasilinear theory.

This paper describes a new inward transport mechanism arising from nonlinear electron den-
sity evolution, and therefore outside quasilinear theory. We calculate its details for a fluid
model of TEM turbulence in the weakly collisional limit [8]. The effect arises for other types
of turbulence and transport, as shown in the final section [9]. The physics is relatively sim-
ple. The nonlinear density mixes the linear eigenmodes of a complete basis set, as it must if
there is a deviation from the linear response of the instability. The TEM basis consists of the
eigenmode of the instability and a second eigenmode that is damped for all wavenumbers. The
excitation of the damped eigenmode drives inward transport. This is a fairly general outcome
of damped eigenmode excitation, at least for drift waves: instabilities relax gradients with
outward transport, hence stable eigenmodes peak up the profile with inward transport.

2. Anisotropic Saturation of TEM Turbulence

To calculate the transport, inward and outward, the nonlinear density response must be ob-
tained, along with the self-consistent potential. Equivalently, the evolution of unstable and
stable eigenmodes can be calculated. This treats the linear instability driving the unstable
eigenmode, the mode-mode coupling that both saturates the instability and excites the sta-
ble eigenmode, and the damping of the stable eigenmode. The damped eigenmode is readily
accessible to the dynamics, and because it reaches finite amplitude, is a potent sink for satura-
tion. The energy transfer that accomplishes saturation occurs in a dual space whose orthogonal
manifolds consist of eigenmode space and wavenumber space. In eigenmode space energy is
carried from the unstable eigenmode to the damped eigenmode where it is dissipated. Ink-
space energy is carried in a highly anisotropic fashion from unstable wavenumbers withky 6= 0
to zonal wavenumbers withky = 0. Transfer in these spaces is intertwined. Zonal wavenum-
bers of the stable eigenmode are damped and saturate the instability. These do not contribute
directly to particle transport, but they moderate fluctuation levels throughout the spectrum.
Hence the nonlinear flux calculation must account for the interplay between zonal modes and
the damped eigenmode driving the inward flux component.

Saturation in the dual space of eigenmodes and wavenumbers is described by decomposition
of the TEM density and potential fieldsnk(t) andφk(t) into nonlinear evolution equations for
the amplitudesβ1(k, t) andβ2(k, t) of the unstable and damped eigenmodes. These evolution
equations are given by,[ ∂

∂t
+ iω j

]
β j =−∑

k′

2

∑
m=1

(−1) jCm(k,k′)β′mβ′′1 , (1)

where the notationβ′j ≡ β j(k′, t), β′′j ≡ β j(k−k′, t), β j ≡ β j(k, t) is adopted for shorthand and is
also applied to the eigenfrequenciesω j(k). The factorsCm(k,k′)=−(k′× ẑ·k)Rm(k′)/[R1(k)−
R2(k)] are the non symmetrized nonlinear coupling coefficients of the eigenmode decomposi-
tion. The eigenmode decomposition projects the density and potential onto the linear eigen-
vectors [R1(k),1] and [R2(k),1] of the original evolution equations, diagonalizing the coupling.
The projection is(
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φk(t)
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1
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=
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≡ M
(

β1(k, t)
β2(k, t)

)
. (2)

The eigenfrequencies and eigenvectors are obtained in the usual way from the evolution equa-
tions in the original representation of density and potential given by

∂nk

∂t
+νnk +[ikyvDα̂−ν]φk =−∑

k′
(k′×z·k) φk′nk−k′ (3)

∂φk

∂t
− ε1/2ν

1+k2− ε1/2
nk +

[ikyvD(1− α̂ε1/2)+νε1/2]
1+k2− ε1/2

φk =−∑
k′

(k′×z·k)(k−k′)2

1+k2− ε1/2
φk′φk−k′,

(4)
wherenk = ε1/2ne + φk is an effective density,ne is the density of trapped electrons,φk is
the potential,ε1/2 is the trapping fraction,ν is the detrapping rate,vD is the diamagnetic
drift velocity, α̂ = 1+3ηe/2, andηe is the ratio of gradient scale lengths for the density and
temperature. A derivation of this model and the dimensionless normalizations forn, φ, t, x,
and y are given in Ref. 7. The eigenvector componentsRj(k) are the rationk/φk for each
eigenfrequencyω j . They are obtained by linearizing Eq. (4), replacing∂/∂t with −iω j , and
solving fornk. The result is

Rj(k) =−1+k2− ε1/2

νε1/2

[
iω j −

ikyvD(1− α̂ε1/2)+νε1/2

1+k2− ε1/2

]
, (5)

where the eigenfrequenciesω j are the roots of the characteristic equation,ω2(1+k2−ε1/2)+
ω[−vDky(1− α̂ε1/2)+ iν(1+ k2)]− ikyvDν = 0. Expressions for these frequencies are given
in Ref. 7. There are two approximations that simplify Eq. (1). The first is the neglect of
the polarization drift nonlinearity of Eq. (4), appropriate for the long wavelength regimek <
1. The eigenmode amplitudes are then governed by the density advection nonlinearity of
Eq. (3). The mode coupling in Eq. (1) reflects density advection under the inverse eigenmode
decompositionnk = R1β1 +R2β2 andφk = β1 +β2. The second approximation takesφk ≈ β1

in the nonlinearity. Numerical solutions show thatβ2 � β1 in saturation (butR1β1 ∼ R2β2).
The approximated nonlinearity preserves energy conservation.

The saturation of the TEM instability in the dual space of eigenmodes and wavenumber is
described by energy-moment equations constructed from Eq. (1). These are equations for
|β1|2, |β2|2, Re〈β∗1β2〉, and Im〈β∗1β2〉, obtained by forming appropriate moments of Eq. (1).[ ∂

∂t
+ iω j − iω∗

l

]〈
β jβ∗l

〉
=−∑

k′

2

∑
m=1

[
Tm jl(k,k′)+T∗

ml j(k,k
′)
]

. (6)

Here Tm jl(k,k′) = (−1) jCm(k,k′)〈β′mβ′′1β∗l 〉 is a triplet correlation of the eigenmode ampli-
tudes. The indices( j, l) take the values (1,1), (2,2), (1,2), and (2,1) to recover equations for
the four correlations. As noted in Ref. 10, the coupling coefficientsCm(k,k′) become very
large whenky = 0. This is due to a near singularity ink-space associated with the vanishing
of R1(k)−R2(k) for ky = 0, up to collisional terms. Becauseβ2(kx,ky = 0) is strongly driven
by spectral transfer and damped at a rate slightly larger than the instability growth rate, the
instability is saturated by this transfer. The transfer is controlled by correlations withβ2, i.e.,
|β2|2, Re〈β∗1β2〉, and Im〈β∗1β2〉. Consequently it is important to determine the effect of these
correlations on particle transport.
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The particle flux,Γ = −(c/B0)∑k Im〈nkφ−k〉, is quadratic innk andφk. Hence it depends on
the same correlations|β1|2, |β2|2, Re〈β∗1β2〉, and Im〈β∗1β2〉 that mediate saturation. Writing the
particle flux in the eigenmode decomposition,Γ =−∑k ky

[
ImR1|β1|2 + ImR2|β2|2 + Im(R1 +

R2)Re〈β∗1β2〉+Re(R2−R1)Im〈β∗1β2〉
]
, whereΓ has been normalized to the product of sound

speed and mean density, and all quantities are understood to be functions of wave numberk.
From Eq. (5) forRj and the roots of the characteristic equation, the flux is

Γ = ∑
k

ky

{
[α̂(1+k2)−1][1+k2− ε1/2]

(1− α̂ε1/2)3

( ν
kyvD

)
|β1|2−

(1− α̂ε1/2)
ε1/2

(kyvD

ν

)
|β2|2

− (1− α̂ε1/2)
ε1/2

(kyvD

ν

)
Re〈β∗1β2〉−

[2ε1/2− (1+k2)(1+ α̂ε1/2)]
(1− α̂ε1/2)ε1/2

Im〈β∗1β2〉

}
. (7)

The first term of Eq. (7) is the quasilinear flux, while the remaining three terms are the nonlin-
ear components of the flux. They lie wholly outside quasilinear theory. (In quasilinear theory
the amplitude of the unstable eigenmode|β1|2 is identical to the fluctuation level|φk|2, and
β2 = 0.) As expected for an unstable eigenmode of a simple drift wave model, the quasilinear
flux is outward. The second term is a contribution coming entirely from the stable eigenmode,
and, as expected, it is inward. The signs of the third and fourth terms are not tied in any simple
way to transparent physical considerations. They can only be determined from solutions of the
saturation equation.

The spectrum evolution equations are solved analytically as follows: 1) The triplet correla-
tionsTm jl(k,k′) are recast as products of the second order correlations using statistical closure
theory. Applying the eddy damped quasinormal Markovian closure,

Tm jl(k,k′) =
(−1) j+1Cm(k,k′)

iWm1l

2

∑
p=1

{
(−1)m

[
Cp(k′,k)〈βpβ∗l 〉|β′′1|2 +Cp(k′,k′−k)

× 〈β′′∗p β′′1〉〈β1β∗l 〉
]
−Cp(k−k′,−k′)〈β′∗p β′m〉〈β1β∗l 〉−Cp(k−k′,k)〈βpβ∗l 〉〈β′∗1 β′m〉

+ (−1)l
[
C∗

p(k,k
′)〈β′∗p β′m〉|β′′1|2 +C∗

p(k,k−k′)〈β′′∗p β′′1〉〈β′∗1 β′m〉
]}

(8)

whereiWm1l = iω′
m+ iω′′

1− iω∗
l −∆ω′

m−∆ω′′
1−∆ω∗

l is the turbulent response function, and
∆ωm is the turbulent (amplitude-dependent) frequency of the eigenmodem. Expressions for
∆ω1 and∆ω2 are given in Ref. 7. We assume thatWm1l is dominated by the linear frequencies,
consistent with a wave-dominated regime valid forkyvDα̂ > k2nk. This is a weak turbulence
approximation that is nominally valid for the long wavelengths that dominate the particle flux,
and the near threshold conditions explained below. 2) Each spectrum and spectrum evolution
equation is projected onto two complementary spectrum subranges, aky = 0 zonal component
denoted with subscriptZ, and a spectrum averaged component that excludesky = 0, denoted
with subscriptT. 3) The eight resulting spectral components are solved for their dependence
on the system parameters residing inω j andRj . These parameters are the electron detrapping
rateν, the diamagnetic frequencyω∗, the ratioηe of electron density scale length to tempera-
ture gradient scale length, and the trapping fractionε1/2. The dependence of the correlations
on the gradient-dependent quantitiesω∗ and ηe must be determined to derive flux-gradient
relationships that characterize the thermodynamics of the transport and set the profiles. Be-
cause the closed spectrum-balance equations are very complicated, it is necessary to simplify
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utilizing an ordered expansionν/ω∗ ∼ k∼ η2
e � 1. The ordering assumes a long wavelength,

weakly collisional regime, slightly above the instability thresholdηe =−k2. Asymptotic anal-
ysis identifies dominant balances. A set of conditions are applied to identify balances that
represent a steady state driven by the instability and saturated by anisotropic transfer to the
damped zonal models. These conditions are described in detail in Ref. 8.

3. Interplay between Zonal Modes and Damped Eigenmode

The dominant spectrum balances show that the energy flow in the dual space goes first from
|β1|2T , which is driven by the linear instability, to Im〈β∗1β2〉T . From there it is transferred
to |β2|2T , Re〈β∗1β2〉T , and the zonal spectra|β1|2Z, |β2|2Z, Re〈β∗1β2〉Z, and Im〈β∗1β2〉Z. Linear
damping in|β2|2T , |β2|2Z, an Im〈β∗1β2〉T enters the lowest order balances and allows the system
to reach steady state. Net energy transfer to|β1|2Z requires residual flow damping beyond
electron detrapping to achieve stationarity in|β1|2Z. The saturation scalings are

|β1|2T = c1ηeε1/2ν2/k̄6,

Im〈β∗1β2〉T = c2η2
eεν3/ω∗k̄

6,

Re〈β∗1β2〉T = c3ηeε1/2ν4/ω2
∗k̄

6,

|β2|2T = c4η2
eε1/2ν4/(ω2

∗k̄
6),

|β1|2Z = c5ηeν2/k̄6,

−Re〈β∗1β2〉Z = |β2|2Z = c6η2
eε1/2ν2/k̄6,

Im〈β∗1β2〉Z = c7νω∗/ε1/2k̄4. (9)

The crucial effect on saturation of anisotropic spectral transfer to zonal modes is illustrated by
the scalings predicted from the spectrum balance equations when zonal modes are removed
from the coupling. The damping of the stable eigenmode still saturates the turbulence, but
the scalings are different:|β1|2T ∼ ω2

∗/K̄4, Im〈β∗1β2〉T ∼ νω∗ηeε1/2/k̄4, Re〈β∗1β2〉T ∼ ν2ε/k̄4,
and|β2|2T ∼ ν2ε1/2/k̄4. In particular, the energy in the unstable eigenmode is proportional to
ν2 when coupling to zonal modes is included; when excluded, the energy is proportional to
ω2
∗. This is consistent with the well-known decrease in fluctuation level associated with zonal

modes.

4. Flux-Gradient Relationships of Inward and Outward Flux Components

Because electrons drive the instability in TEM, the net particle flux is constrained by ther-
modynamics to be outward in steady state. Consequently the inward flux associated with the
damped eigenmode cannot exceed the outward flux produced by the unstable eigenmode. Sim-
ulations show that the former is a sizable fraction of the latter, reducing the flux to 0.1-0.3 of
its quasilinear value. In terms of the eigenmode correlations the flux is given by

Γ = ∑
k

ky

[
ηe(νω∗)|β1|2−

ω∗
ν
|β2|2−

ω∗
ν

Re〈β∗1β2〉+
1

ε1/2
Im〉β∗1β2〉

]
. (10)

As always the presence of the factorky prohibits zonal modes from directly contributing to
transport. The first term is the quasilinear flux; the remaining terms describe the contribution of
the stable eigenmode. Substituting from the saturation scalings given above, the flux becomes

Γ = ∑
k

ky

( ν3

ω∗k̄6

)
ηeε1/2

[
(c1 +c2−c4)ηe−c3

]
. (11)
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This flux is nondiffusive in all terms. The quasilinear term goes asL3
n/L2

T , as do the outward
directed component from Im〈β∗1β2〉 and the inward component from|β2|2T . The second inward
component, from Re〈β∗1β2〉T , goes asL2

n/LT . Because of the proportionality toL3
n and L2

n
the flux is neither diffusive nor convective. For reference, diffusive transport goes as 1/Ln,
and the thermodiffisive (convective) pinch goes as 1/LT . The anisotropic saturation involving
zonal modes not only lowers fluctuation levels, but it changes the flux-gradient relationships.
If anisotropic transfer to zonal modes is removed all flux terms are diffusive or convective.

5. Damped Eigenmode Excitation

It is important to establish whether the effects described above are peculiar to the TEM model
of Eqs. (3)-(4), or whether they are intrinsic to many different kinds of instability-driven
plasma turbulence. To begin to answer this question we examine an entirely different type
of plasma turbulence. We also formulate general conditions predicting when damped eigen-
mode excitation will affect transport. We examine a simple model for ion turbulence driven by
the ion temperature gradient [9]. The model equations are given by

(1+k2)
∂φ
∂t
− ikyvDφ(η̂k2−1)+ ikzu‖ =−∑

k′
(k′× ẑ·k)φk′φk−k′k

′2 ≡ (1+k2)Nφ, (12)

∂u‖
∂t

+ ikzφ+ ikzp =−∑
k′

(k′× ẑ·k)φk′u‖k−k′ ≡ Nu‖, (13)

∂p
∂t

+ ikyvDη̂φ =−∑
k′

(k′× ẑ·k)φk′pk−k′ ≡ Np, (14)

wherevD ≡ (cTe/eB)d(lnn0)/dx is the drift velocity,η̂ = (1+ ηi)/τ, ηi = d(lnTi)/d(lnn0)
is the ratio of temperature to density gradient scale lengths,τ ≡ Te/Ti is the ratio of electron
to ion temperature, andφ, u‖, and p are the potential, parallel ion flow, and ion pressure
at wavenumberk unless otherwise noted. These are normalized according toφ ≡ eΦ/Te,
u‖ ≡ ṽ‖i/cs, andp≡ [p̃i/〈Pi0〉](Ti/Te), wherePi = 〈Pi0〉+ p̃i . Length scales are normalized to

ρs = (cTe/eB)(mi/Te)1/2.

This system differs from the TEM system in several ways. It is a model for ion turbulence
with adiabatic electrons. In contrast, the TEM model describes electron turbulence in which
nonadiabatic electrons are responsible for the nonlinear density response. The ion model has
no particle transport, but does drive ion heat and parallel momentum fluxes. The ion model
has three fluctuating fields instead of two. There are therefore three linear eigenmodes. One is
unstable for an intermediate wavenumber band, one is stable for all wavenumbers, and one is
marginally stable for the intermediate band and stable for higher wavenumbers. This mimics
the eigenmode structure of ITG turbulence. Like the TEM model, the ion model is local,i.e.,
there is no radial eigenmode. It is also a fluid model. Most importantly, the ion pressure and
parallel flow fields are governed by the advective nonlinearity∇φ× ẑ·∇. This is the same
nonlinearity of the TEM system, but is also generic to virtually all types of plasma turbulence.

Equations (12)-(14) are already sufficiently complex that doing analytic theory becomes a
daunting prospect. Instead we solve the system numerically. This exercise provides a template
for numerical analysis of more complicated computational models to determine if damped
eigenmodes are excited in them, and what role such eigenmodes play in saturation and trans-
port. An eigenmode solver is applied to the linearized equations to determine the eigenmodes
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for a given parameter configuration. The full nonlinear equations are then solved numeri-
cally as an initial value problem, providing time histories foru‖(t), p(t), andφ(t). At each

FIG. 1. Nonlinear evolution of energies, showing exponential
growth and saturation of the total energy and the energy of the
unstable, stable and marginally stable eigenmodes.

point in the temporal evolutionu‖(t),
p(t), and φ(t) are projected onto the
complete basis of the linear eigen-
modes. This produces a time history
of each eigenmode. The results of this
procedure as applied to Eqs. (12)-(14)
are shown in Fig. 1. The figure dis-
plays the time history of each eigen-
mode in terms of its energy|β j(t)|2.
The total energy is also plotted. It is
not equal to the sum of the eigenmode
energies∑ j |β j(t)|2 because cross cor-
relations also contribute to the en-
ergy for this system of nonorthogonal
eigenvectors. Two features of this evo-
lution are important. First, all three
eigenvectors grow exponentially, but
only one is linearly driven. The other
two eigenvectors are driven by mode-mode coupling. Second, the nonlinearly driven eigen-
modes (linearly stable and marginally stable) saturate at a level that is comparable to that of
the unstable mode. Indeed, later in the simulation the level of the stable modes exceeds the
level of the unstable mode. From the analysis of the TEM system we can anticipate a signifi-
cant effect on transport fluxes, and because damped modes are involved, we would expect the
fluxes to be smaller.

The radial heat transport is given byχ = ∑k ky〈p−kφk〉. Figure 2 displays this flux along with
the quasilinear heat flux. The latter is calculated by taking the linearized response ofp−k to
the potentialφk and using the simulation results for the value of|φk|2. We see that the true flux
is indeed considerably smaller than the quasilinear flux. It is also apparent that the flux and
turbulence are highly bursty, and that the flux becomes negative during certain periods. More
frequently, the flux is a very small fraction of the quasilinear flux, indicating a large negative
contribution from the stable eigenmodes.

A general condition has been formulated to indicate when the inward flux component of a sta-
ble eigenmode significantly alters the outward quasilinear flux. To affect the flux it must first
grow to finite amplitude. A simple parametric instability analysis applied to the eigenmode
decomposition shows that stable eigenmodes generally grow exponentially from infinitesimal
levels when the unstable eigenmode initially achieves a higher amplitude. This is not a condi-
tion of the nonlinear growth per se, but makes the parametric instability approximation valid.
Under that approximation the nonlinearity is dominated by two wavenumbers on the unsta-
ble mode directly driving a coupled wavenumber on the stable mode. Because the unstable
eigenmode grows promptly from initial conditions and the stable eigenmodes first decay, the
parametric instability analysis is generally valid for early times. To determine the conditions
required for a nonlinearly driven stable eigenmode to affect saturation we consider a simple
model of an unstable eigenmodex1 generically coupled to a stable eigenmodex2 according to
ẋ1 = γ1x1 + B1x2

1 + D1x1x2 andẋ2 = −γ2x2 + B2x2
1 + .... There may be other eigenmodes but
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we focus onx1 as the fastest growing linearly unstable eigenmode, andx2 as the stable eigen-
mode with the strongest nonlinear drive. This model applies to a decomposition of evolution
equations into a representation that diagonalizes the linear coupling. The simple question is

FIG. 2. Heat flux for ion temperature gradient model showing
the quasilinear approximation and the smaller true flux.

the following: given a growth rateγ1,
a stable eigenmode damping rateγ2,
a nonlinear drive of the stable eigen-
modeB2x2

1, and a nonlinear feedback
D1x1x2 of the stable eigenmode on the
unstable eigenmode, when does the
stable eigenmode saturate at a suffi-
ciently high level to allow it to com-
pete with a saturationB1x2

1 of the un-
stable eigenmode by itself? Analysis
shows that this occurs when

Pt =
D1B2

B2
1(2+ γ2/γ1)

≥ 1. (15)

This condition indicates that damped
eigenmodes play a significant role in
transport provided their damping is
not significantly larger than the insta-
bility drive. Note that a damped eigen-
mode whose damping rate is of the
same order as the linear growth rate is
at no significant disadvantage relative

to a marginally stable mode in terms of playing a role in saturation. This contradicts a com-
mon view that only marginally stable or very weakly damped modes (like zonal flows) can
be expected to play any role in saturation. For weakly collisional TEMPt � 1, consistent
with the results reported in this paper. For that systemγ2 is slightly larger thanγ1. For the
ion temperature gradient model,Pt ≈ 1 for both stable eigenmodes. Equation (15) also re-
quires favorable coupling such thatD1B2/B2

1 is not much smaller than unity. The coupling
coefficientsB1, B2, andD1 depend on the projection of the evolution equations in the original
representation onto the linear eigenmodes,i.e., on the linear eigenvectors. Because the projec-
tion can be very complicated in its dependence on the system parameters and the eigenvector
components, general rules are difficult to formulate for the type of eigenmodes and coupling
that favor a significant role for damped eigenmodes. This question is presently under study
and will be reported elsewhere.
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