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Abstract. Zonal flow behaviour and its effect on turbulent transport in tokamak plasmas are investigated

by global fluid simulations of electrostatic ion temperature gradient (ITG) driven turbulence. It is found

that oscillatory zonal flows called geodesic acoustic modes (GAMs) appearing in a high q (safety factor)

region have the same frequency in a certain radial region whose width is almost proportional to
√

ρia in

positive shear tokamaks, and the radial wavelength of the GAMs is proportional to ρi , where ρi is an ion

Larmor radius and a is a minor radius of a plasma. The turbulent transport is affected by the nonlocal

behaviour of the GAMs. It seems that the radial width of the region connecting a low tranport region

where the stationary zonal flows are dominant with a high transport region where the GAMs are dominant

is related with the nonlocal width of the GAMs. In reversed shear tokamaks, turbulent transport by the

ITG turbulence is high in a broad radial region when the GAMs are dominant. The turbulent transport

is reduced in a minimum q region where q is enough low to damp the GAMs. The difference of zonal

flow behaviour causes the difference of the turbulent transport and may trigger formation of ion internal

transport barriers in both positive and reversed shear tokamaks.

1 Introduction

Suppression of anomalous transport or formation of transport barriers is essential for con-
finement improvement of tokamak plasmas. Drift wave turbulence such as ion temperature
gradient (ITG) driven turbulence is considered a cause of the anomalous transport and
zonal flows generated from the drift wave turbulence regulate turbulent transport. This
drift wave-zonal flow system has been studied by many authors extensively [1]. In recent
years not a little theoretical and experimental attention has been devoted to geodesic
acoustic mode (GAM) [2] which is a branch of zonal flows in toroidal plasmas. The GAM
is oscillation of zonal flows due to coupling of the zonal flows with poloidally asymmetric
(m, n)=(±1, 0) pressure sidebands via geodesic curvature [3], where m and n are poloidal
and toroidal mode numbers, respectively. Since the GAMs have finite frequency and are
excited easily in a tokamak edge region with high safety factor (q), they are detected
in many toroidal devices [4–12]. Recent nonlinear simulation studies have shown that
geodesic transfer effect, which is energy transfer between the zonal flows and the pres-
sure sidebands via the geodesic curvature, plays an important role in determining zonal
flow level [3, 13–18]. Although conventional almost stationary zonal flows suppress the
turbulent transport effectively, the GAMs are less effective in suppressing the turbulence
because of their time varying nature [14,18,19]. Thus zonal flow behaviour including the
GAMs may affect the anomalous transport and the formation of transport barriers in
tokamak plasmas.

In this paper nonlinear interaction between the zonal flows/GAMs and the ITG tur-
bulence in tokamak plasmas is studied by global ITG turbulence simulation. First we
investigate effects of ρ∗ = ρi/a on the zonal flow behaviour and the turbulent transport
in tokamak plasmas with positive magnetic shear, where ρi is an ion Larmor radius and
a is a minor radius of a torus. Next the zonal flows/GAMs-ITG turbulence system in
reversed shear tokamaks is analyzed. Finally results and conclusions are summarized.
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2 Model Equations

A three-field electrostatic ion fluid model is used to describe the electrostatic ITG turbu-
lence with adiabatic electrons. The model consists of an ion continuity equation,

dw

dt
= Teq

a

neq

dneq

dr
(1 + ηi)∇θ∇2

⊥φ +
a

neq

dneq

dr
∇θφ

−∇‖v‖ + ωd ·
(

φ + Ti +
Teq

neq
n

)

+ Dw∇2
⊥w, (1)

an equation of motion for the ion fluid in the parallel direction,

dv‖
dt

= −∇‖Ti −
Teq

neq
∇‖n −∇‖φ + Dv∇2

⊥v‖, (2)

an ion temperature equation with Hammett-Perkins closure [20],

dTi

dt
= Teq

a

neq

dneq

dr
ηi∇θφ − (Γ − 1)Teq∇‖v‖ − (Γ − 1)

√

8Teq

π
|∇‖|Ti

+Teqωd ·
(

(Γ − 1)φ + (2Γ − 1)Ti + (Γ − 1)
Teq

neq
n

)

+ DT∇2
⊥Ti, (3)

and adiabatic response of electrons is given by,

n =
neq

τTeq
(φ − 〈φ〉), (4)

where, w = n/neq −∇2
⊥φ is the generalized vorticity, neq (Teq) is an equilibrium density

(ion temperature) normalized by the central value nc (Tc), τ = Te0/Ti0, Te0(Ti0) is an
electron (ion) equilibrium temperature, ηi = d ln Teq/d ln neq, Γ = 5/3 is a ratio of specific
heats and 〈·〉 denotes the flux surface average. We assume circular tokamak geometry
(r, θ, ζ), where r is a radius of magnetic surface, θ and ζ are poloidal and toroidal angles,
respectively. Then operators are defined as

df

dt
= ∂tf + [φ, f ], ωd · f = 2ǫ[r cos θ, f ],

[f, g] =
1

r

(

∂f

∂r

∂g

∂θ
− ∂f

∂θ

∂g

∂r

)

,

where ǫ = a/R is an inverse aspect ratio, a and R are minor and major radii, respectively.
Here the normalizations are (tvti/a, r/ρi, ρi∇⊥, a∇‖) → (t, r,∇⊥,∇‖),

a

ρi

(

n

nc
,
eφ

Tc
,
v‖
vti

,
Ti

Tc

)

→ (n, φ, v‖, Ti)

where vti =
√

Tc/mi, ρi = vti/ωci, ωci = eB0/mi. Artificial dissipations (Dw, Dv, DT ) are
included to damp small scale fluctuations.



3 TH/P2-11

3 Effects of ρ∗ on GAMs and Turbulent Transport in Positive Shear Toka-
maks
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FIG. 1: Radial variation of zonal flow fre-
quency spectra for ρ∗ = 0.005. Frequency

is normalized by vti/a. In the figure the
pure GAM frequency fGAM = ωGAM/2π and
the pure parallel sound wave frequency of the

(1,0) mode fsound = ωsound/2π are also plot-
ted.

In the previous work we reported that tur-
bulent transort driven by the ITG turbu-
lence can be controlled through the change
of zonal flow behaviour by a q profile
[14, 18]. However, it is difficult to connect
the suppression of the turbulent transport
by the stationary zonal flows with a trans-
port barrier because radial variation of
the transport obtained in the simulation
is mild. This is due to large ρ∗ = ρi/a
whose value used in the previous work is
0.0125. Global ITG turbulence simula-
tions also showed that the frequency of
the GAMs does not vary continuously with
a radius, but its radial variation is step-
like and frequency spectra of the GAMs
have peaks at the same frequency in a cer-
tain radial region as shown in FIG. 1. In
FIG. 1, the pure GAM frequency fGAM =
√

2(Γ + τ )Teq(a/R)/2π and the pure par-
allel sound frequency of the (m, n)=(1, 0)

mode fsound =
√

(Γ + τ )Teq(a/qR)/2π are also plotted. This fsound is typical frequency
of dynamics along magnetic field for the (1, 0) mode in the model. When fsound ap-
proaches the GAM frequencies, the GAMs will damp. The nonlocal behaviour in the
GAM frequency was also observed experimentally in JFT-2M [21]. It is considered that
the nonlocal behaviour becomes weak for small ρ∗.

We have performed global electrostatic ITG turbulence simulation with various ρ∗

values from ρ∗=0.0125 to ρ∗=0.003, and investigated effects of ρ∗ on the nonlocal be-
haviour of the GAMs and the turbulent transport. The other parameters used in the
simulation are R/a=4, Te=Ti, neq = 0.8 + 0.2e−2(r/a)2, Teq = 0.35 + 0.65(1 − (r/a)2)2,
q = 1.05 + 2(r/a)2. The temperature profile is fixed in the calculations. The numerical
calculations are done by Fourier mode expansion in the poloidal and toroidal directions
and finite difference in the radial direction. The Fourier modes included in the calcula-
tions are ones having resonant surfaces between 0.2 < r/a < 0.8 with ∆n=2, nmax=50
for ρ∗=0.0125, ∆n=4, nmax=100 for ρ∗=0.005 and ∆n=4, nmax=124 for ρ∗=0.003, and
nonresonant (m, n) = (0, 0), (1, 0) components, where ∆n is the interval of the toroidal
mode number and nmax is the maximum toroidal mode number. The radial grid number
is 256 for ρ∗=0.0125 and 512 for ρ∗=0.005 and 0.003. The artificial dissipations are set
to Dw = Dv = DT = 4.8× 10−2m4(ρi/a)3. For the (0,0) mode, the dissipations are set to
10−4.

The radial variation of zonal frequency spectra for ρ∗=0.005 is already shown in FIG.
1. When nonlinear terms are turned off artificially in a quasi steady state in the ρ∗=0.005
case, the GAMs become damped oscillations and their frequencies are near fGAM as shown
in FIG. 2. Hence, it is presumed that the turbulence is related with the nonlocal behaviour
of the GAMs. It is found that the normalized radial width in which the GAMs have the
same frequency, ∆r/a, is almost proportional to

√
ρ∗, that is ∆r ∝ √

ρia, while the radial
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FIG. 2: (a) Zonal flows as a function of radius and time and (b) radial variation of zonal flow
frequency spectra when nonlinear terms are turned off artificially in the ρ∗ = 0.005 case.

wavelength of the GAMs is proportional to ρi [22]. Since the radial characteristic length
of the linear toroidal ITG mode is also proportional to

√
ρia, this result indicates that the

radial structure of the GAMs in an ITG-GAM system is strongly affected by the toroidal

ITG modes. Recently the eigenmode of GAM whose characteristic wavelength is ρ
2/3
i L

1/3
T

is obtained in the limit of Te ≫ Ti, where LT is temperature scale length [23].

Figure 3 shows radial variations of ion thermal diffuisivity χ normalized by ρ2
i vti/a and

zonal flow frequency spectra for three different cases. The zonal flow frquency spectra
and the χ profiles denoted by a solid line are obtained from the simulation with only (0,
0) and (1, 0) modes for n = 0. The χ profiles denoted by a dashed line are obtained from
the simulation with more n = 0 modes up to (m, n)=(9, 0). It is noted that the region
where strong GAMs are excited is mainly determined by the pressure and the safety factor
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FIG. 3: Radial variations of normalized ion thermal diffusivity and zonal flow frequency spectra
for (a) ρ∗ = 0.0125, (b) ρ∗ = 0.005 and (c) ρ∗ = 0.003. The zonal flow frquency spectra and the

χ profiles denoted by a solid line are obtained from the simulation with only (0, 0) and (1, 0)
modes for n = 0. The χ profiles denoted by a dashed line are obtained from the simulation with

more n = 0 modes up to (m, n)=(9, 0).
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profiles and almost independent of ρ∗. Since the GAM frequencies are close to those of
the ITG turbulence, the GAM dominant region (r/a > 0.4) is a high transport region
and the statinoary zonal flow region (r/a < 0.4) is a low transport region in general. It
is expected in a local sense that χ varies rapidly around r/a = 0.4 where is the boundary
between the GAMs and the stationary zonal flows. However the GAMs have the nonlocal
nature whose characteristic length is ∆r and the turbulent transport is affected by the
nonlocal behaviour of the GAMs. It seems that the radial width of the region connecting
the low tranport region with the high transport one is related with the nonlocal width
of the GAMs, ∆r. In the ρ∗ = 0.0125 case, the slope of χ beginning around r/a = 0.3
goes up to r/a ≈ 0.6 and it is difficult to recognize the boundary between the low and
the high transport regions. The gradient of χ around r/a = 0.4 is steeper for smaller ρ∗

and the radial width of the connection region decreases with ρ∗. The boundary between
the low and the high transport regions is very clear in the ρ∗ = 0.003 case. The difference
of χ between the low and the high transport regions increases when the more n = 0
modes are included in the simulation. In the case with the more n = 0 modes, the (1, 0)
pressure perturbation energy is partly transferred to the higher m and n = 0 modes and
the GAMs become weak. On the other hand, the inclusion of the more n = 0 modes does
not affect the stationary zonal flows strongly. As a consequence, the turbulent transport
in the GAM region in the case with the more n = 0 modes is higher than that in the case
with only (0, 0) and (1, 0) modes as shown in FIG. 3.

4 Numerical Results in Reversed Shear Tokamaks

In this section we report results of the ITG turbulence simulation in tokamak plasmas
with the reversed magnetic shear configuration. We have performed the simulation with
the q profiles shown in FIG. 4(a) for ρ∗ = 0.005. The other parameters are the same as
the positive shear case. It is noted that for the reversed shear cases several nonresonant
modes of n 6= 0 are included in the calculation in addition to the modes having resonant
surfaces between 0.2 < r/a < 0.9 and the nonresonant (m, n)=(0, 0), (1, 0) modes. Since
global gyrokinetic analyses showed that ITG modes in reversed shear tokamaks have finite
nonresonant components whose ratio m/n is close to qmin [24, 25], nonresonant modes of
n 6= 0 should be included. Effect of the nonresonant modes on a linear eigenfunction of the
ITG mode in a reversed shear tokamak is shown in FIG. 5. In the case with nonresonant
modes (FIG. 5(a)), a slab-like structure appears on a minimum q surface [24,26], but such
a structure is not seen in the case without nonresonant modes (FIG. 5(b)).
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FIG. 4: Radial profiles of (a) safety factor q and (b) normalized ion thermal diffusivity for q =
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(a) qmin (b) qmin

FIG. 5: Eigenfunctions of the ITG mode with n = 22 in a reversed shear plasma in the case (a)
with and (b) without nonresonant modes for q=2 − 3(r/a)2 + 4(r/a)4 and ρ∗ = 0.0125.

Figure 4(b) shows radial variations of normalized ion thermal diffusivity χ for the q
profiles shown in FIG. 4(a). In the high q case (solid line in FIG. 4), the ion turbulent
heat transport is high in a broad region, because the GAMs are dominant in almost the
whole region as shown in FIG. 6(a). Decrease of the transport is not seen in a minimum
q region where an internal transport barrier (ITB) has been observed in several tokamak
experiments [27]. In the low q case (dashed line in FIG. 4), however, the turbulent
transport is reduced around r/a = 0.5. This is due to change of zonal flow behaviour.
As shown in FIG. 6, the parallel sound frequency fsound approaches the frequencies of
the GAMs and the GAMs damp, when q is reduced. In the region where the GAMs are
alive, the turbulent transport is still high. Here it is noted that the turbulent transport
around the radius of maximum fsound (r/a ≈ 0.515) is more reduced than that around a
minimum q surface (r/a ≈ 0.612). This point is not clear in the previous simulation for
ρ∗ = 0.0125 [28]. If more n = 0 modes were included as in the positive shear cases, the
gap of the turbulent transport would be deeper.
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FIG. 6: Radial variation of zonal flow frequency spectra for (a) q = 2.2− 3(r/a)2 + 4(r/a)4 and

(b) q = 1.8 − 3(r/a)2 + 4(r/a)4.
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5 Summary and Conclusions

We have performed electrostatic ITG turbulence simulations in both positive and reversed
shear tokamaks. It is found that in the positive shear tokamaks the radial width in which
GAMs have the same frequency, ∆r, is almost proportional to

√
ρia and this nonlocal

behaviour of the GAMs may arise from combination of the GAMs and the ITG turbulence.
Besides it seems that the radial width of the region connecting a low tranport region where
stationary zonal flows are dominant with a high transport region where the GAMs are
dominant is related with the nonlocal width of the GAMs. The boundary between the low
and high transport regions is clearer for smaller ρ∗. When more n = 0 modes are included
in the calculations, the GAMs are weakened by energy transfer to higher m modes and
the difference of χ between the low and high transport regions expands. In the reversed
shear tokamak with low q, reduction of turbulent transport has been observed around
the radius of maximum fsound near a minimum q surface where the stationary zonal flows
are excited. On the other hand, there is no reduction of the turbulent transport in the
minimum q region in the high q case because the GAMs are dominant. Thus the difference
of zonal flow behaviour causes the difference of the turbulent transport and may trigger
formation of ion ITBs in both positive and reversed shear tokamaks. In order to simulate
the ITB formation to the final stage, it is necessary to include other effects such as heating
and equiribrium E×B flow driven neoclassically. Simulation of the ITG turbulence driven
by heating is in progress. The results of the simulation with ρ∗ = 0.0125 have shown that
central temperature is the highest in the case of the reversed shear plasma with low q
when heat source is fixed. The simulation with smaller ρ∗ and inclusion of the E×B flow
will be done in a future study.
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