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Abstract. The non-linear characteristics and consequences of ideal magnetohydrodynamic (MHD) instabilities 
relevant for the edge transport barrier region of tokamak plasmas are analysed theoretically. The focus is  on two 
particular instabilities, the peeling mode and the ballooning mode, which are both thought to have an important 
role to play in Edge-Localised Modes (ELMs). The final state of the plasma edge after suffering a peeling mode is 
deduced by an extension of Taylor relaxtion theory. The model predicts the region of plasma affected by the 
instability which, when combined with the stored energy in this region, can be used to predict the energy expelled 
by the ELM. The result is consistent with measurements from Type III ELMs, for which the theory is thought to 
be most relevant. The ballooning mode, driven by the plasma pressure gradient, is thought to be important for 
larger ELMs. An analytic reduction of the fully non-linear ideal MHD equations reveals that the instability will 
cause the plasma to form filaments, which erupt explosively from the most unstable flux surface. A new result is 
that when the edge current density is low the filaments push into the core of the plasma. However, at higher 
current density, comparable to the bootstrap current in a low collisionality plasma, the filaments explode outwards 
to be ejected into the scrape-off layer and possibly beyond. If these filaments should strike the vessel wall in 
future, larger tokamaks such as ITER, they could do serious damage. This suggests that the edge current density 
will be an important control parameter. 
 
1. Introduction 
 
The standard operating regime for ITER is the high confinement H-mode. This high confinement is 
largely a result of a transport barrier that arises spontaneously at the plasma edge as the heating 
power is increased beyond a threshold. Steep pressure gradients build in this transport barrier, 
typically leading to high values of the bootstrap current there. Two types of instability can arise: 
ballooning modes driven by the pressure gradient and peeling, or kink, modes driven by the current 
density, or its gradient. These instabilities are now widely believed to be responsible for the so-called 
ELMs: edge-localised modes. These explosive events lead to a series of eruptions in which heat and 
particles are expelled from the plasma surface. The resulting heat loads are a major concern for 
ITER, both for the divertor area and the vacuum vessel wall.  
While linear stability analysis has been tested rigorously against data at the onset of ELMs [1,2], this 
is insufficient to develop models for energy loss mechanisms. These will likely require a non-linear 
theory. In this paper, we address non-linear models for both peeling modes and ballooning modes. 
The focus is on the individual modes, employing analytic approximations to simplify the analysis and 
reveal their essential characteristics. In the following section, we address the peeling mode. We do 
not attempt to derive the detailed non-linear mechanisms here, but instead use a relaxation theory to 
predict the final state. The model, which we believe to be relevant for small Type III ELMs, provides 
a prediction for the ELM-affected region and the energy expelled during an ELM. Then, in Section 
3, we address the non-linear evolution of the ballooning mode. We employ an expansion which is 
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rigorously valid in the early non-linear evolution. We predict that the ballooning mode causes 
filaments of plasma to be ejected from the most unstable flux surface, with an explosive growth rate 
even close to linear marginal stability. A new result is that the filaments are only ejected outwards, 
towards the vessel wall, provided there is sufficient edge current density. We close in Section 4 with 
a  summary and discussion, considering the implications for ITER and future work necessary to 
model the ELM energy and particle loss. 
 
2. A peeling mode/Taylor relaxation based ELM model 
 
In this section we discuss a model for ELMs that is based on the idea that a toroidal peeling 
instability can trigger a Taylor relaxation [3] of the plasma edge region [4]. The tokamak is not 
generally thought of as a relaxing system: although there is excess potential energy in the equilibrium 
fields, it is not readily available simply because there are, in general, few active MHD modes to 
release it. The converse is true in the reversed field pinch where there is a wealth of modes which can 
continuously release equilibrium energy, giving rise to the so-called “dynamo” effect. Nevertheless, 
some regions of the tokamak, such as the core region (whenever q0<1), will have modes available 
and this has formed the basis for a relaxation based theory of sawtooth behaviour [5]. Here we 
propose that because the tokamak edge is prone to ballooning and peeling modes, in particular when 
it has entered the “H-mode” of operation and steep equilibrium gradients have developed, a similar 
“relaxing plasma” view can be adopted for ELM activity. We will emphasise the role of peeling 
modes in this model (perhaps, then, best suited to describe Type III ELMs), and a simple argument 
serves to support this position. Edge pressure gradients give rise to the “bootstrap” current, which 
for large aspect ratio is 
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This current must be taken into account in any equilibrium calculation. Here we have defined the 
minor radius, r, the major radius R0, inverse aspect ratio, ε0=r/R0, the poloidal field Bp, the total 
magnetic field B, the safety factor q and the pressure p; αΒ is a dimensionless measure of the 
pressure gradient. There are then implications for ballooning stability as can be seen by writing 
Ampère's law in the form µ0J=B0(2−s)/R0q, where s is the magnetic shear. If we assume that the 
total current J is solely the bootstrap current then it follows that αΒ=ε0

1/2(2−s). We see that the 
effect of the bootstrap current is to reduce the magnetic shear at high pressure gradient. Such low 
shear equilibria are generally less prone to ballooning modes due to access to the so-called second 
stability regime [6]. Indeeed, ballooning instabilities can disappear completely for negative shear, 
corresponding to αΒ>2 ε0

1/2. 
 

The peeling mode is essentially an ideal kink mode driven by the differential torque caused by the 
presence of edge current density. We assume that when the peeling  stability boundary is crossed 
there is a release of equilibrium energy leading to the formation of a relaxed state. This state is simply 
that of a flattened current density. For conventional, monotonically decreasing current profiles the 
edge current density would then be higher than the initial, un-relaxed state. By itself this effect would 
further destabilise the peeling mode. However, there is an additional effect caused by the relaxation: 
the formation of skin currents at the inner boundary of the relaxed region and at the plasma/vacuum 
interface, corresponding to r=rE and r=a respectively. For conventional current profiles we find that 
the skin current at r=a is negative (see Fig 1) with respect to the plasma current. This contributes a 
stabilising effect. At a critical value of rE−a these effects compensate each other, while for lower 
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values the destabilising contribution 
dominates. Above the critical value of 
rE−a, all peeling modes are stable, so we 
interpret this critical width as the ELM-
affected region. Combining the width with 
the pressure gradient in this region 
provides us with an estimate of the ELM 
energy loss. 
 
The first task in constructing our model is 
to calculate the relaxed state that is 
appropriate for an annular plasma region. 
This entails forming an extended version of 
the original Taylor calculation. We seek to 

minimise the annular magnetic energy and hypothesise that both the helicity of the annulus and the 
poloidal flux ψ are conserved. A simple calculation then gives the relaxed q profile (flat current) as 
q=r2/(Cr2+D), where the coefficients C and D depend on the helicity and flux. 
 

Starting from the force balance equation for the poloidal flux ψ 
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where F=m(BR0)(1/q−n/m), we introduce dimensionless quantities: ∆X=(1/qX−n/m), a measure of 
the ‘distance’ from the rational surface (located in the vacuum region), KX= µ0(R0/B)Ijs=[[1/q]]X+

X-, 
the jump in q due to the presence of a skin current at position r=X, and ∆'X=[[(r/ψ)dψ/dr]], the 
well-known MHD stability index. 
 

Boundary conditions have to be applied at r=rE, a and these conditions correspond physically to 
requiring that perturbed surfaces remain flux surfaces and that the tangential stress across the 
perturbed interfaces be continuous. With subscripts E and a referring to the 
inner and outer radii, we find the following system 
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where g=1−(rE/a)2m and IX is the local current density at position r=X neglecting the skin currents. In 
deriving these equations we have taken solutions ψ~r± m, appropriate for large m. The left hand side 
of Eq (2) is ~ −δW, the ideal MHD energy functional. 
 

We examine the simple initial q profile qi=q0+(qa−q0)r2, for 0≤r≤1 and  qi=qa r2 for r≥1. Then, for 
fixed q0, qa Eqs (2-4) yield a sequence of unstable (m, n) values (i.e. for which δW<0). Increasing 
dE=(a−rE)/a we can then find a marginally stable state for each (m, n) pair. We assume that the final 
state corresponds to the maximum dE. 
 
 

Figure 1: A schematic of the pre- (full)  and  
post-ELM (dashed) relaxed current profiles 
showing the formation of skin currents 
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Now, scanning in qa with q0=1 we can produce Figs 2 and 3, which show dE(max) and the 
corresponding n values. An interesting feature of these  figures is their “scatter” which can be traced 
to the precise rational m/n value that occurs.  We see that the final stable states occupy ~10% of the 
minor radius. Figure 2 can be used, in combination with the toroidal peeling stability condition [7] to 
deduce the actual pressure energy lost in the relaxation. For example, for parameters typical of a 
collisional MAST edge plasma this gives ∆WELM/WPED ~ few percent, which is in good agreement 
with experiment [8].  
 

Future studies will include the bootstrap current in the calculation of the initial equilibrium, and an 
investigation of the subsequent development of the negative current sheet, which will be unstable to 
high m tearing modes. 
 
3. Non-linear ballooning mode theory 
 
A full 3-D numerical solution of the ideal MHD equations to derive the structure and evolution of 
modes having a long wave-length along the magnetic field lines and short wavelength perpendicular 
to them is extremely challenging. It is therefore useful to employ approximations that allow the full 
system to be reduced so that the essential properties of this type of instability can be deduced. This 
serves as an important benchmark for the large-scale non-linear simulations, and also helps us to 
interpret both experimental tokamak plasma and numerical data.  We have previously reported such 
an analytic reduction, based on an expansion in the ratio of the perpendicular to parallel (to the 
magnetic field lines) wavelength, which is assumed to be small [9,10]. That result was valid for the 
range of Mercier stability index, 0>DM>−3/4 which is usually, but not always satisfied in the plasma 
edge. In that limit we found that the inertia is dominated by the plasma that is far along the erupting 
flux tube, i.e. far from the region of maximum displacement. This introduces a fractional time 
derivative into the equation describing the evolution of the flux tube in the directions perpendicular to 
the magnetic field line. We have recently extended this calculation to incorporate a regime relevant 
for stronger plasma shaping, when DM<−3/4. This combines, in a single unified theory, the two 
previous theories derived in the two extreme limits [10,11]. The result is: 

Figure 2:  The maximal marginal dE, plotted 
against initial edge qa value. The dashed 
curve gives an analytic approximation for 
dE(max) in the case n=1. 

Figure 3:  The toroidal mode numbers n 
that give the maximal marginal dE values 
of Fig. 2, plotted against the initial edge 
qa value. 
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   (5) 
where we have written the full 3-D solution for the amplitude of the perturbation in the form 
 ( ) ( ) ( )εψθαψθαψξ ,;,;,, HtFt =   
and F=∂u/∂α. The parameter µ is a measure of the ballooning drive, with µ<1 corresponding to 
linear instability. Our coordinates are the poloidal flux, ψ, a field line label, α and a poloidal angle, θ, 
which measures the distance along the field line. The variation along the field line, H(θ,εψ), is the 
solution of the standard, linear ballooning equation. This is not assumed: it is derived from the 
ordering procedure that we employ. The dependence of H on ψ is due only to relatively slow 
equilibrium variations, as indicated explicitly by the introduction of the small ordering parameter, ε. 
 

Notice that the inertia consists of the two terms on the left hand side of the equation. The first term 
represents the inertial contribution from the plasma far along the field line. It is a representation of a 
fractional time derivative, with an index equal to the difference between the two Mercier solutions, 
λ=λS−λL=(1−4DM)1/2. The second term is the inertia associated with the rest of the plasma, and has 
the second order time derivative expected from ideal MHD. The fractional derivative arises because 
far along the field line the amplitude decays at a rate which itself depends on the inertia. In linear 
theory, for example, the eigenfunction extends along the field line a distance which is inversely 
proportional to the growth rate. This means that the mass of plasma involved depends on the growth 
rate: multiplying this mass by the explicit quadratic dependence on growth rate results in a 
dependence of the total inertia which varies with growth rate as a fractional power.  
 

Turning to the terms on the right hand side, the first two terms, linear in F and u, are simply the linear 
mode drives. The quadratic nonlinearity is the one responsible for the explosive behaviour. Balancing 
this non-linearity against the dominant inertial term, we deduce that  

 ( )[ ]

( )[ ]








>
−

<<
−

2                
,

1

21            
,

1

~

2
0

0

λ
ψα

λ
ψα λ

tt

tt
F   

The time of the explosion, t0 depends on the initial conditions.  
 

The third term on the right determines the mode structure. Balancing this with the quadratic 
nonlinearity, we predict 
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This predicts that the mode tends to broaden radially, but narrow in the flux surface (perpendicular to 
the field line).  Combined with the long wavelength behaviour along the field line, contained in the 
ballooning solution H, this therefore describes a filamentary structure, exploding from the flux surface 
that is most unstable to the ballooning mode. Such structures have been observed both in large scale 
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numerical simulations [12] and experimentally during the ELM [13]. The final terms complicate this 
picture, but are zero for up-down symmetric plasmas. Their effect will be assessed numerically in the 
future. 
 

One can envisage a number of models for the resulting heat loss triggered by this instability [14]. One 
such model suggests that the filament remains attached to the pedestal on the inboard side, but 
pushes out into the scrape-off layer on the outboard side, possibly involving a reconnection as the 
filament pulls through the X-point. In this model, the filament acts as a conduit, through which hot 
plasma flows from the pedestal region into the SOL, or divertor region. The resulting model for the 
maximum heat loss that could occur in this process would require three ingredients: the flow rate of 
plasma and heat through the filament; the cross-sectional area of the filament, and the lifetime of the 
filament. Such a model, with input from experimental data, is able to produce trends seen in 
experimental databases [15]. It is clearly desirable, for a predictive model, to provide theoretical 
estimates for the inputs. This provides the motivation for our present work, which aims to calculate 
the coefficients appearing in Eq (5) and predict filament sizes for real experimental equilibria.  
 

We have focussed on the coefficient of the quadratic non-linearity, C2, which is 
 HPC =2   (6) 
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The vector H is the solution to the linear ballooning equation, including the perturbation parallel to the 
magnetic field, e⊥ and e∧ are vectors in the directions B×∇α and B×∇ψ respectively, and L(He⊥) is 
related to the ideal MHD linear force operator (see [10]). One challenge is immediately apparent: 
calculation of this coefficient requires high order derivatives of the ballooning solution, H, both along 
and across field lines. We therefore need to specify the equilibrium to higher accuracy than is 
typically possible from experimental equilibria. The procedure we follow is therefore the following. 

1. We first scan the reconstructed equilibrium to deduce the most linearly unstable flux surface 
(to ballooning modes). We shall refer to this as the “reference” surface. 

2. We then smooth this flux surface by performing a Fourier expansion in poloidal angle of the 
major radius, R, the vertical height, Z, and the poloidal field Bp.  

3. To evaluate derivatives with respect to the poloidal flux requires two more flux surfaces, 
infinitesimally close to this one, and also smooth. It would be wrong to take two flux surfaces 
from the equilibrium solver and Fourier decompose these also: the three flux surfaces would 
then not satisfy the Grad-Shafranov equation to sufficient accuracy. Instead we use the 
expansion procedure of Mercier and Luc (e.g. see [15] to solve the Grad-Shafranov 
equation analytically in the vicinity of our reference flux surface. Thus, we are able to derive 
R, Z and Bp on these adjacent flux surfaces in terms of R, Z and Bp (and their poloidal 
derivatives) on the reference surface. The pressure and current profile functions are also 
required, of course.  

4. We now perform a ballooning analysis on all three surfaces, allowing us to derive the 
required derivatives to high accuracy. 
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One advantage of the above procedure is that one can map out a large parameter space without re-
calculating the equilibria. One can simply adjust the local pressure gradient and current density on the 
reference flux surface and the side-band flux surfaces, properly calculated, will automatically satisfy 
the Grad-Shafranov equation. This is the same principle as that employed analytically for generating 
s−α diagrams to illustrate the general features of linear ballooning mode stability, for example. 
 

The second complication is associated with the integrand. This only decays as θ−λ, where λ~1.1 is 
typical. To derive the integral along the field line to infinity would therefore require us to integrate out 
to an impracticably large distance, as it would only converge very slowly ~θ1−λ. It is therefore 
necessary to perform a two length scale analysis, valid as |θ|→∞, and derive the asymptotic form of 
the integral analytically, matching to the numerical solution at lower θ. 
 

We show here some first results from such an analysis. We take an equilibrium solution 
corresponding to a JET-like plasma with a relatively wide edge pedestal in the pressure. The flux 
surfaces towards the edge of the plasma (ie those analysed) are shown in Fig 4, where the red, 
dashed surface is the most unstable one (see Fig 5). The current for the equilibrium is held low to 
ensure that the ballooning mode forms a pressure gradient limit, and there is no access to second 
stability. Following the steps 1-4 above, we then evaluate C2, with the surprising result that it is 
negative. This corresponds to plasma filaments erupting from the reference surface, but penetrating in 
towards the centre of the plasma, rather than out into the scrape-off layer as we originally 
anticipated. This, of course, would be good news for ITER as the filaments would then not strike the 
vessel wall. The result is, however, clearly at odds with the results of numerical simulations and 
experimental evidence, which do observe filaments erupting out into the scrape-off layer. 

 
We know from experiment that the current density in the pedestal seems to have a significant effect 
on the ELM size. We therefore explore the effect of varying current density and pressure gradient on 
the value of C2. The results are shown in Fig 6. Note that our analysis is only valid provided we are 
close to the linear marginal stability curve. From this figure we see that if a critical current is 
exceeded, C2 switches sign and the filaments are then predicted to explode outwards into the 
scrape-off layer. More studies are required to explore whether this is a general result and to make 
quantitative comparisons with simulations and experiment. Given the complexity of the calculations, it 
is also desirable to build a physical picture of what is happening, and what determines whether the 
filaments propagate outwards or inwards. This is work in progress. 

Figure 4: Flux surfaces of the 
equilibrium analysed. The full, red 
curve is the most unstable flux surface 
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4.  Summary 
We have described two non-linear theories for 
how ELMs could affect the tokamak pedestal. 
For peeling modes, we have described a 
relaxation theory, which is expected to be most 
relevant for small ELMs and the predicted energy 
loss is consistent with measurements from MAST. 
For the ballooning modes, we have found that a 
critical pedestal current density needs to be 
achieved in order for the filaments to be ejected 
outwards. Further work is required to explore 
whether this is qualitatively consistent with 
numerical simulations and experimental data. In 
particular, we would like to explore other 
equilibria to see if this is a robust result. Our result 
suggests that identifying a technique to control the 
current in the plasma edge may be important for 

controlling ELMs and protecting the vessel wall in future tokamaks such as ITER. 
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