1 TH/4-1RDb

ELM crash theory: relaxation, filamentation, explosions and implosions

H.R. Wilson, JW. Connor 1), S.C. Cowley 2), C.G. Gimblett 1), R.J. Hastie 1),
P. Helander 1), A. Kirk 1), S. Ssarelma 1), and P.B. Snyder 3)

Univergty of York, Hedington, York YO10 5DD UK

1) EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14
3DB, UK

2) Imperia College, Prince Consort Road, London SW7 2BZ, UK, and UCLA, Los Angles, USA
3) Generd Atomics, PO Box 85608, San Diego, Cdifornia, 94550

e-mall contact of main author: hw508@york.ac.uk

Abstract. The non-linear characteristics and consequences of ideal magnetohydrodynamic (MHD) instabilities
relevant for the edge transport barrier region of tokamak plasmas are analysed theoretically. The focusis on two
particular instabilities, the peeling mode and the ballooning mode, which are both thought to have an important
roleto play in Edge-Localised Modes (ELMs). The fina state of the plasma edge after suffering a peeling mode is
deduced by an extension of Taylor relaxtion theory. The model predicts the region of plasma affected by the
instability which, when combined with the stored energy in this region, can be used to predict the energy expelled
by the ELM. The result is consistent with measurements from Type Il ELMs, for which the theory is thought to
be most relevant. The ballooning mode, driven by the plasma pressure gradient, is thought to be important for
larger ELMs. An analytic reduction of the fully non-linear ideal MHD equations reveals that the instability will
cause the plasma to form filaments, which erupt explosively from the most unstable flux surface. A new result is
that when the edge current density is low the filaments push into the core of the plasma. However, at higher
current density, comparable to the bootstrap current in alow collisionality plasma, the filaments explode outwards
to be gjected into the scrape-off layer and possibly beyond. If these filaments should strike the vessel wall in
future, larger tokamaks such as ITER, they could do serious damage. This suggests that the edge current density
will be animportant control parameter.

1. Introduction

The stlandard operating regime for ITER is the high confinement Hmode. This high confinement is
largely a result of a transport barrier that arises spontaneoudy at the plasma edge as the hegting
power is increased beyond a threshold. Steep pressure gradients build in this transport barrier,
typicdly leading to high values of the bootsrgp current there. Two types of ingtability can arise:
ballooning modes driven by the pressure gradient and peeling, or kink, modes driven by the current
dengty, or its gradient. These ingtabilities are now widdy believed to be respongble for the so-cdled
ELMs edge-locaised modes. These explosve events lead to a series of eruptions in which heat and
particles are expeled from the plasma surface. The resulting heat loads are a mgor concern for
ITER, both for the divertor area and the vacuum vessel wall.

While linear gability andyss has been tested rigoroudy againgt data at the onset of ELMs [1,2], this
is insufficient to develop models for energy loss mechanisms. These will likely require a nontlinear
theory. In this paper, we address non-linear modds for both pedling modes and ballooning modes.
The focus is on the individud modes, employing andytic gpproximations to smplify the andyss and
reved their essentid characterigtics. In the following section, we address the pedling mode. We do
not attempt to derive the detailed non-linear mechanisms here, but instead use a relaxation theory to
predict the find state. The modd, which we believe to be rdlevant for smdl Type 1l ELMs, provides
a prediction for the ELM -affected region and the energy expelled during an ELM. Then, in Section
3, we address the non-linear evolution of the balooning mode. We employ an expanson which is
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rigoroudy vdid in the early nonlinear evolution. We predict that the balooning mode causes
filaments of plasmato be gected from the most ungtable flux surface, with an explosve growth rate
even close to linear margina stability. A new reault is that the filaments are only gected outwards,
towards the vessel wall, provided there is sufficient edge current density. We close in Section 4 with
a smmay and discusson, conddering the implications for ITER and future work necessary to
model the ELM energy and particle loss.

2. A peeling mode/Taylor relaxation based ELM model

In this section we discuss a modd for ELMs that is based on the idea that a toroidd peding
ingability can trigger a Taylor relaxaion [3] of the plasma edge region [4]. The tokamak is not
generdly thought of as ardaxing system dthough there is excess potentid energy in the equilibrium
fidds, it is not reedily avalable amply because there are, in generd, few active MHD modes to
release it. The converseistruein the reversed field pinch where there is awedlth of modes which can
continuoudy release equilibrium energy, giving rise to the so-cdled “dynamo” effect. Nevertheless,
some regions of the tokamak, such as the core region (whenever go<1), will have modes available
and this has formed the bass for a relaxation based theory of sawtooth behaviour [5]. Here we
propose that because the tokamak edge is prone to balooning and pedling modes, in particular when
it has entered the “H-mode” of operation and steep equilibrium gradients have developed, a smilar
“relaxing plaamd’ view can be adopted for ELM activity. We will emphasise the role of peding
modes in thismode (perhaps, then, best suited to describe Type 11 ELMs), and a smple argument
serves to support this position. Edge pressure gradients give rise to the “bootstrap” current, which
for large aspect ratio is
e,’>dp B ag
B, dr "R, eY 2q
This current must be taken into account in any equilibrium cdculation. Here we have defined the
minor radius, r, the mgor radius Ry, inverse aspect ratio, ey=r/R,, the poloidd field B, the total
magnetic fiedd B, the safety factor q and the pressure p; ag is a dimensonless measure of the
pressure gradient. There are then implications for balooning sability as can be seen by writing
Ampere's law in the form myJ=By(2- s)/R,q, where s is the magnetic shear. If we assume that the
total current J is solely the bootstrap current then it follows that ag=e,"%(2- 5). We see that the
effect of the bootstrap current is to reduce the magnetic shear at high pressure gadient. Such low
shear equilibria are generaly less prone to balooning modes due to access to the so-called second
dability regime [6]. Indeeed, balooning ingabilities can disappear completdly for negative sheer,
corresponding to ag>2 e,".
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The peeling mode is essentidly an ided kink mode driven by the differentid torque caused by the
presence of edge current density. We assume that when the peding <tability boundary is crossed
thereisareease of equilibrium energy leading to the formation of arelaxed sate. This Sate is smply
that of a flattened current dendty. For conventiona, monotonicaly decreasng current profiles the
edge current density would then be higher than the initid, un-relaxed state. By itsdlf this effect would
further destabilise the pedling mode. However, there is an additiond effect caused by the relaxation:
the formation of skin currents at the inner boundary of the relaxed region and a the plasmalvacuum
interface, corresponding to r=rg and r=a respectively. For conventiond currert profiles we find that
the skin current at r=a isnegative (see Fig 1) with respect to the plasma current. This contributes a
gabiligng effect. At a criticd vadue of re- a these effects compensate each other, while for lower
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vdues the dedabiliang contribution
dominates. Above the critical vaue of
re- a, dl peding modes are stable, so we
interpret this critical width as the ELM-
affected region. Combining the width with
the pressure gradient in this region
provides us with an estimate of the ELM
energy loss.

J(r)

The fird task in congtructing our modd is
to cdculate the relaxed dae that is
gppropriate for an annular plasma region.
This entails forming an extended version of
the origind Taylor caculaion. We seek to
minimise the annular magnetic energy and hypothesise that both the hdicity of the annulus and the
poloidd flux y are conserved. A smple caculation then gives the relaxed g profile (flat current) as
g=r?/(Cr?+D), where the coefficients C and D depend on the hdlicity and flux.

Figure 1: A schematic of the pre- (full) and
post-ELM (dashed) relaxed current profiles
showing the formation of skin currents

Starting from the force balance equation for the poloidd flux y

dgdy o my _ md,

dé drg r F dr
where F=m(BRy)(1/g- n/m), we introduce dimensionless quantities: Dx=(1/gx- n/m), a measure of
the ‘distance’ from the rationa surface (located in the vacuum region), Kx= my(Ry/B)lis=[[1/q]] " x-,
the jump in g due to the presence of a skin current at position r=X, and D' x=[[(r/y )dy /dr]], the
wedl-known MHD tahility index.

Boundary conditions have to be gpplied a r=rg, a and these conditions correspond physicaly to
requiring that perturbed surfaces remain flux surfaces and that the tangentia sStress across the
perturbed interfaces be continuous. With subscripts E and a referring to the

inner and outer radii, we find the following system

D,[D,Dg + la]+Ka§(Ka- 2D, Dk + m- 1)- 2.2 Iagzo @

De.[De.DE+1¢. - IE+]+KE§KE - 2D )(Dg +m- 1)+ 2%- |E_E=o ©)
_ . (Dg +2m)

D¢ _'Zmz—)ngZm (4)

where g=1- (re/a)* and I istheloca current density at position r=X neglecting the skin currents. In
deriving these equations we have taken solutionsy ~r* ™, appropriate for large m. The left hand side
of Eq (2) is~ - dW, theided MHD energy functiond.

We examine the Smple initial g profile gi=0o+(0a- qo)r?, for OEr£1 and =g, r? for r3 1. Then, for
fixed 0o, 0a EQS (2-4) yidd a sequence of ungtable (m, n) values (i.e. for which d\W<O0). Increasing
d==(a- re)/a we can then find amargindly stable state for each (m, n) pair. We assume that the find
state corresponds to the maximum de.
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Figure 2: The maximal marginal de, plotted Figure 3: The toroidal mode numbersn

against initial edge g, value. The dashed that give the maximal marginal de values
curve gives an analytic approximation for of Fig. 2, plotted against the initial edge
de(max) in the case n=1. O value.

Now, scaning in g, with go=1 we can produce Figs 2 and 3 which show dg(max) and the
corresponding n values. An interesting feature of these figures is thar “scatter” which can be traced
to the preciserational m/n value that occurs. We see thet the find stable states occupy ~10% of the
minor radius. Figure 2 can be used, in combination with the toroida peding sability condition [7] to
deduce the actua pressure energy logt in the relaxation. For example, for parameters typica of a
collisond MAST edge plasma this gives DWe u/Weep ~ few percent, which is in good agreement
with experiment [8].

Future studies will indude the bootstrap current in te caculation of the initia equilibrium, and an
investigation of the subsequent development of the negative current sheet, which will be ungtable to
high m tearing modes.

3. Non-linear ballooning mode theory

A full 3-D numericd solution of the ided MHD equations to cerive the structure and evolution of

modes having a long wave-length aong the magnetic field lines and short wavelength perpendicular
to them is extremdy chdlenging. It is therefore useful to employ gpproximations that alow the full

system to be reduced so that the essentid properties of this type of ingtability can be deduced. This
serves as an important benchmark for the large-scale nontlinear smulations, and aso helps us to
interpret both experimental tokamak plasma and numerical data. We have previoudy reported such
an andytic reduction, based on an expangon in the retio of the perpendicular to pardld (to the
magnetic fidd lines) wavelength, which is assumed to be smdl [9,10]. That result was vdid for the
range of Mercier gability index, 0>Dy>- 3/4 which is usudly, but not aways satidfied in the plasma
edge. In that limit we found that the inertia is dominated by the plasma thet is far ong the erupting
flux tube, i.e. far from the region of maximum displacement. This introduces a fractional time
derivative into the equation describing the evolution of the flux tube in the directions perpendicular to
the magnetic fied line. We have recently extended this caculation to incorporate a regime relevant
for stronger plasma shaping, when Dy<- 3/4. This combines, in a sngle unified theory, the two
previous theories derived in the two extreme limits[10,11]. Theresultis:
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where we have written the full 3-D solution for the amplitude of the perturbation in the form
xly ,a.a;t)=Fly ,a;t)H@,ey)

and F=fu/fla. The parameter mis a measure of the balooning drive, with nk1 corresponding to
linear ingability. Our coordinates are the poloidd flux, y , afidd linelabd, a and apoloidd angle, q,
which measures the distance dong the field line. The variation dong the fidd line, H(g,ey ), is the
solution of the standard, linear balooning equation. This is not assumed: it is derived from the
ordering procedure that we employ. The dependence of H on y is due only to rdatively dow
equilibrium variaions, asindicated explicitly by the introduction of the smal ordering parameter, e.

Notice that the inertia consists of the two terms on the left hand side of the equation. The firg term
represents the inertia contribution from the plasma far along the fidd line. It is a representation of a
fractiona time derivative, with an index equd to the difference between the two Mercier solutions,
| =l & | |=(1- 4D\)*. The second term is the inertia associated with the rest of the plasma, and has
the second order time derivative expected from ideal MHD. The fractiond derivative arises because
far dong the field line the amplitude decays a a rate which itsdf depends on the inertia In linear
theory, for example, the eigenfunction extends dong the fidd line a digance which is inversdy
proportiond to the growth rate. This means that the mass of plasma involved depends on the growth
rate. multiplying this mass by the explicit quadratic dependence on growth rae results in a
dependence of the total inertiawhich varies with growth rate as afractiond power.

Turning to the terms on the right hand side, the first two terms, linear in F and u, are smply the linear
mode drives. The quadratic nonlinearity is the one responsible for the explosive behaviour. Bdancing
this nor+linearity againgt the dominant inertid term, we deduce that

1

|[t( )t]'

T [to ,y t]2
Thetime of the explosion, to depends on the initid conditions.

1<l <2

| >2

The third term on the right determines the mode dructure. Bdancing this with the quadratic
nonlinearity, we predict

i 1

Oy ) _thofay )-tI" ) t]
Da —2 | >2

) [to ’y t]
This predicts that the mode tends to broaden radidly, but narrow in the flux surface (perpendicular to
the fidd line). Combined with the long wavelength behaviour dong the fidd line, contained in the

ballooning solution H, this therefore describes a filamentary structure, exploding from the flux surface
that is most ungtable to the balooning mode. Such structures have been observed both in large scale

1<l <2
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numerica amulations [12] and experimentaly during the ELM [13]. The find terms complicate this
picture, but are zero for up-down symmetric plasmas. Their effect will be assessed numericdly in the
future.

One can envisage a number of modds for the resulting hest loss triggered by thisingability [14]. Ore
such modd suggests that the filament remains attached to the pedestal on the inboard side, but
pushes out into the scrape-off layer on the outboard side, possibly involving a reconnection as the
filament pulls through the X-point. In this modd, the filament acts as a conduit, through which hot
plasma flows from the pedestal region into the SOL, or divertor region. The resulting modd for the
maximum hest loss that could occur in this process would require three ingredients. the flow rate of
plasma and heat through the filament; the cross-sectiond area of the filament, and the lifetime of the
filament. Such a model, with input from experimenta deta, is able to produce trends seen in
experimental databases [19]. It is clearly desrable, for a predictive model, to provide theoretica
edimates for the inputs. This provides the motivation for our present work, which ams to caculate
the coefficients gppearing in Eq (5) and predict filament Szesfor rea experimenta equilibria

We have focussed on the coefficient of the quadratic non-linearity, C,, which is
C, =(HP) (6)

HP = - e, M0 +20LD +[le, H |xE R [(B A ]- S(e, A)(E MK

+2—;0[(ﬂ N)H |Na ey < (He. )]

0=l (@ ie ] - (8 )]

The vector H isthe solution to the linear balooning equation, including the perturbation pardld to the
megnetic fild, e. and ey are vectorsin the directionsB” Na and B” Ny respectively, and L(He») is
related to the idedl MHD linear force operator (see [10]). One chdlenge is immediately gpparent:
caculation of this coefficient requires high order derivatives of the ballooning solution, H, both aong
and across field lines. We therefore need to specify the equilibrium to higher accuracy than is
typicaly possible from experimenta equilibria The procedure we follow is therefore the following.

1. Wefirg scan the reconstructed equilibrium to deduce the most linearly ungtable flux surface
(to balooning modes). We shdl refer to this asthe “reference’ surface.

2. We then amooth this flux surface by performing a Fourier expangon in poloidd angle of the
major radius, R, the vertica height, Z, and the poloidd field B,.

3. To evauate derivatives with respect to the poloidd flux requires two more flux surfaces,
infinitesmally close to this one, and adso smooth. It would be wrong to take two flux surfaces
from the equilibrium solver and Fourier decompose these aso: the three flux surfaces would
then not satidfy the Grad-Shafranov equation to sufficient accuracy. Instead we use the
expanson procedure of Mercier and Luc (e.g. see [15] to solve the Grad-Shafranov
eguation andyticaly in the vicinity of our reference flux surface. Thus, we are able to derive
R Z and B, on these adjacent flux surfaces in tems of R Z and B, (and their poloidal
derivatives) on the reference surface. The pressure and current profile functions are aso
required, of course.

4. We now peform a bdlooning andyss on dl three surfaces, dlowing us to derive the
required derivatives to high accuracy.
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One advantage of the above procedure is that one can map out alarge parameter space without re-
cdculating the equilibria. One can smply adjust the loca pressure gradient and current density on the
reference flux surface and the sde-band flux surfaces, properly caculated, will automaticdly satisy
the Grad- Shafranov equation. This is the same principle as that employed andyticaly for generating
s a diagramsto illugtrate the generd features of linear balooning mode stability, for example.

The second complication is associated with the integrand. This only decaysas ', where | ~L.1 is
typicd. To derive theintegrd dong the fidd lineto infinity would therefore require us to integrate out
to an impracticably large distance, as it would only converge very dowly ~g*'. It is therefore
necessary to perform atwo length scde andysis, vdid as [g|® ¥, and derive the asymptotic form of
theintegral andyticaly, matching to the numerical solution &t lower g.

We show here some firs results from such an andyss. We take an equilibrium solution
corresponding to a JET-like plasma with a relaively wide edge pedestd in the pressure. The flux
surfaces towards the edge of the plasma (ie those andysed) are shown in Fig 4, where the red,
dashed surface is the most ungtable one (see Fig 5). The current for the equilibrium is held low to
ensure that the balooning mode forms a pressure gradient limit, and there is no access to second
gability. Following the steps 14 above, we then evduate C,, with the surprisng result thet it is
negdtive. This corresponds to plasma filaments erupting from the reference surface, but penetrating in
towards the centre of the plasma, rather than out into the scrape-off layer as we origindly
anticipated. This, of course, would be good news for ITER as the filaments would then not strike the
vessel wadl. The result is, however, clearly a odds with the results of numericd smulaions and
experimenta evidence, which do observe filaments erupting out into the scrape-off layer.
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Figure 4: Flux surfaces of the function of normalised flux (unstable
equilibrium analysed. The full, red when it is negative). The dashed curve
curve is the most unstable flux surface shows the normalised pressure aradient.

We know from experiment that the current dendty in the pedestal seems to have a Sgnificant effect
on the ELM size. We therefore explore the effect of varying current density and pressure gradient on
the vdue of C,. The results are shown in Fig 6. Note that our andlysisis only vaid provided we are
close to the liner margind Sability curve. From this figure we see that if a critical current is
exceeded, C, switches sign and the filaments are then predicted to explode outwards into the
scrape-off layer. More studies are required to explore whether this is a generd result and to make
quantitative comparisons with smulations and experiment. Given the complexity of the caculations, it
is dso dedrable to build a physicd picture of what is happening, and what determines whether the
filaments propagate outwards or inwards. Thisiswork in progress.
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4, Summary

We have described two non-linear theories for
how ELMs could affect the tokamak pedestd.
For peding modes, we have described a
relaxation theory, which is expected to be most
relevant for small ELMs and the predicted energy
loss is conggtent with measurements from MAST.
For the ballooning modes, we have found that a
critical pedesta current densty needs to be
achieved in order for the filaments to be gected
outwards. Further work is required to explore
whether this is quditaively condgtent with
numerical amulaions and experimental data. In
paticular, we would like to explore other
equilibriato seeif thisis arobust result. Our result
suggests that identifying a technique to control the
current in the plasma edge may be important for

controlling ELMs and protecting the vessd wall in future tokamaks such as ITER.
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