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Abstract. The nonlocal physics associated with turbulent and neoclassical transport is in-
vestigated using newly developed simulation capabilities and analytic models. For turbulence
transport, we focus our studies on the turbulence spreading through a transport barrier char-
acterized by an E x B shear layer. We perform a series of numerical experiments by placing a
radial electric field well, with varying strength, next to the region where the ITG instability is
linearly unstable. It is found that an E x B shear layer with an experimentally relevant level
of the shearing rate can significantly reduce turbulence spreading by reducing the spreading
extent and speed. From the spatio-temporal evolution of the turbulence propagation front, we
find that the spreading slows down significantly in the region of higher shearing rate, rather
than at the bottom of the E, well. Our global neoclassical particle simulation using GTC-Neo,
which includes nonlocal physics due to large orbit effects, studies neoclassical physics of NSTX
plasmas. Typically, near the magnetic axis, the ion heat flux is decoupled from the local tem-
perature gradient, breaking the Fick’s law type gradient-flux relation. Our simulation predicts
an outward ion heat flux, even for a reversed local VT; near the magnetic axis, which is in the
same direction as the experimental measurement.

1. Introduction

In this work, the nonlocal physics associated with turbulent and neoclassical trans-
port is investigated using newly developed simulation capabilities[1] and analytic models.
Our global gyrokinetic particle simulation incorporates important realism of tokamak ex-
periments, including the comprehensive influence of non-circular cross section, realistic
plasma profiles, plasma rotation, neoclassical (equilibrium) electric fields, Coulomb colli-
sions, and other features. It has been interfaced with TRANSP, a widely used experimen-
tal data analysis software tool. It directly reads plasma profiles of temperature, density
and toroidal angular velocity from the TRANSP experimental database, and numerical
MHD equilibria reconstructed by the JSOLVER or ESC codes using TRANSP radial
profiles of the total pressure and the parallel current, along with the plasma boundary
shape.

2. Dynamics of Turbulence Spreading

If turbulence can spread or propagate radially, the level of fluctuations at one radial
place can depend on the drive of instabilities located elsewhere. This results in transport
nonlocality. Indeed, a number of global transport phenomena can occur as a direct conse-
quence of turbulence spreading. While turbulence spreading has been widely observed in
direct numerical simulations since 1994[2], the recent high level of interest has revived as
this has been identified as a physics mechanism[3] responsible for the deviation of trans-
port scaling from gyroBohm scaling at moderate system sizes. A nonlocal mechanism is
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necessary to explain this, since local turbulence characteristics compatible with gyroBohm
scaling are observed in global nonlinear gyrokinetic simulations of ITG turbulence[4].

The role of turbulence spreading in breaking the gyroBohm scaling of transport has
been further confirmed from a different gyrokinetic simulation [5] and from different the-
oretical considerations[6]. More recent applications of turbulence spreading include edge-
core coupling[7], turbulence tunneling through a linearly stable gap[8], the role of zonal
flows|9, 10], applications to reversed shear plasmas [11], the particle transport problem[12],
and extensions to a multi-field model[10].

To enhance our understanding of physics mechanisms behind turbulence spreading,
we performed a series of numerical experiments using the aforementioned new version of
the GTC code. First, we examine the global turbulence evolution dynamics. An overall
picture of global turbulence development due to turbulence spreading is illustrated in
Fig. 1. This is from an ITG simulation for geometry and plasma parameters which
are roughly based on DIII-D. The turbulence is driven by the ion temperature gradient
which exceeds the linear threshold in the region 0.42 < r < 0.76. As expected from
previous simulations[13], finite amplitude turbulence spreads both inward and outward in
the radial direction, into the linearly stable regions. The fluctuation intensity level in the
linearly stable region is considerable compared to that in the original linearly unstable
region. Figs. 1-a, b, and c are contour plots for three snapshots of the electric potential
fluctuation on a poloidal plane, which illustrate the evolution of turbulence. At an early
time (Fig. 1-a) before nonlinear saturation, radially elongated toroidal eigenmodes[14] are
generated in the linearly unstable region with a small extension into the linearly stable
zone via linear toroidal coupling. Later on, turbulence eddies are broken up by the self-
generated E x B shear flows (zonal flows) during the nonlinear saturation phase. While
the spreading is initiated as the toroidal eigenmodes are broken into smaller radial scale
fluctuations by the zonal flows(Fig 1-b), most of turbulence spreading occur on a longer
time scale after the local nonlinear saturation of turbulence (Fig 1-c). These fluctuations
eventually evolve into a widely spread global turbulence envelope.

It is important to note that during turbulence spreading in our simulation, the profile
relaxation is negligible. Therefore, the spreading is not a consequence of changes in the
linear stability. Indeed, the k-spectrum of fluctuations observed in the linearly stable
region is significantly different from that of the I'TG linear eigenmodes. The kg-spectra
are significantly down-shifted relative to those of in the linearly unstable region.

As an example of mesoscale phenomena[l5, 16] which occur on scales larger than
an eddy size but smaller than the system size, turbulence spreading is quite a generic
phenomenon as observed in global simulations in both toroidal geometry[17] and in the
absence of toroidal coupling[18, 19], and both with[13] and without[20] zonal flows. To
identify the relative roles of the linear toroidal mode coupling, nonlinear mode coupling,
and self-generated zonal flows, we have carried out a series of numerical experiments to
examine the properties of turbulence spreading associated with different mechanisms. In
the absence of nonlinear mode coupling, as shown in Fig. 2-a, convective spreading occurs
due the linear toroidal mode coupling in agreement with a previous theory prediction by
Garbet[2]. The convective spreading observed in this linear simulation is characterized
by a constant front propagation velocity V; ~ (p;/R)Cs, which is also independent of the
turbulence intensity.

As we turn on the nonlinearity, but with zonal flows artifically suppressed, the temporal
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Figure 1: (a) Spatio-temporal evolution of flux surface averaged turbulence intensity, (b) time
evolution of the intensity at two radii, and (c-e) contour plots for three snapshots of the elec-
tric potential on a poloidal plane, from a simulation of a shaped plasma with typical DIII-D
parameters.

behavior of spreading becomes more complex. First, the turbulence spreading is much
faster than that in the linear simulation. The front propagation velocity appears to
be “convective” in the linearly unstable zone in agreement with the Fisher-Kolmogorov
solution[8]. As the front approaches the region of weaker linear drive, it slows down and
the propagation can be described as “diffusive” or “sub-diffusive”[3]. The turbulence
spreading finally stops when the front reaches the region of strong linear damping.

Finally, the fluctuation envelope evolution, from simulations with the self-generated
zonal flows, is plotted in Fig 1-a. The principle effect of zonal flows is to reduce the
intensity of fluctuations, approximately by a factor of 10. Consequently, the spreading
velocity is reduced as well. It is important to note that while zonal flows play a crucial
role in determining the saturation value of the fluctuation intensity, there are many other
channels of nonlinear mode coupling which can saturate fluctuations even in the absence
of zonal flows. Therefore, it is hard to isolate the possible role of zonal flows in enhancing
turbulence spreading, which has been predicted from an extension of the 4-wave theory][6,
9] in which only the zonal flow mediated nonlinear interaction is kept. At least for the
cases we have simulated, zonal flow induced enhancement of turbulence spreading has not
been observed. A related theoretical discussion can be found in Gurcan et al.[10].

To elaborate our description of turbulence spreading dynamics in a more quantitative
fashion, we perform the following analysis of the simulation data. We measure the turbu-
lence propagation velocity at each radius by recording the time at which the fluctuation
front of a specified turbulence intensity passes through that point. Using the turbulence
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Figure 2: Spatio-temporal evolution of turbulence intensity: (left) linear simulation with all
modes and (right) nonlinear simulation without zonal flows.
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Figure 3: (a) Turbulence propagation velocity (positive and negative velocities indicate out-
ward and inward propagation respectively.) (b) Intensity weighted displacement of turbulence
fluctuations vs time during turbulence spreading.

intensity, < §®? >= 109, we have obtained the results shown in Fig. 3-a. After recording
the arrival time of the turbulence propagation front as a function of radius, we obtained
the turbulence propagation velocity plotted in Fig. 3-a. It is observed that the turbulence
propagation becomes slower as fluctuations propagate away from the linearly unstable re-
gion. In addition, in the presence of self-generated zonal flows, the propagation velocity
is significantly reduced.

Next, we define the radial extent of the fluctuation envelope using the following ex-
pression,

e dz(r —r.)%dg|?
Jie dxlogr 7

where the spatial integral is performed over the linearly stable region from the inner
boundary of the simulation domain (r; = 0.1 for this simulation) to the point where the
linear growth rate vanishes (r. = 0.42). The resulting displacement (JAr[2)'/2 is also a
quantitative measure of turbulence spreading. The time evolution of (|Ar[2)'/2 is plotted
in Fig. 3-b. It clearly illustrates that most of the turbulence spreading starts at about
t = 200, right after the local nonlinear saturation of the I'TG instability. Both simulations
with and without zonal flows show a gradual transition from convective to diffusive (and
possibly sub-diffusive) propagation. The spreading is reduced in the presence of zonal

|Ar|? =
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flows, as discussed before. Finally, we note that the initial high level of (JA7[2)'/? is
due to the spatially-uniform initial loading of small random fluctuations which are not
turbulence generated by plasmas. Therefore, only the evolution after ¢ = 200 makes
physical sense.

3. Turbulence spreading through a transport barrier: the role
of E x B flow shear

Sometimes, nonzero turbulence levels and anomalous transport are observed in a region
where there is no instability drive. For instance, in JT-60U reversed shear plasmas,
reflectometry measurements clearly show the existence of turbulence in the region where
profiles are flat, and the microinstabilities are stable[21]. Therefore, we are faced with
the following natural question: “Can turbulence spread through a transport barrier?” To
address this problem, we performed a number of numerical experiments using the new
version of the GTC code with shaping, by placing an E x B shear layer, with varying
depths of the F, well, next to the linearly unstable zone, as shown in Fig. 4-a.

From the simulations, we observe that the extent of the turbulence spreading decreases
with increasing E x B shear. From the simulations, we observe that the extent of the
turbulence spreading is significantly reduced as the E, well gets deeper (Fig. 4-a). We also
observe that the spreading speed is controlled by the local value of the E x B shearing
rate[22]. As one can see from Fig. 4-b, the fluctuation front propagation slows down
significantly when it crosses regions of the local maximum of the E x B shearing rate.
The overall spatio-temporal evolution of front propagation is consistent with the fact that
the front propagation speed increases with the fluctuation intensity, and the fact that the
E x B shear (not E,) reduces the fluctuation intensity locally.
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Figure 4: (a) The radial extent of turbulence spreading (of steady state fluctuation in-
tensity) is reduced, as the E x B shear layer, located next to the unstable ITG source
region, becomes deeper, with corresponding wg«p = 0.13Cs/a, and wrxp = 0.26C;/a,
respectively. (b) The spatio-temporal evolution of the propagation front shows that the
spreading slows down significantly at the local maxima of the E x B shearing rate.
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Figure 5: (a) Simulated neoclassical ion heat flux of an NSTX plasma, compared with
the experimental measurement and the prediction of standard neoclassical theory. (b) Ion
temperature profile of NSTX plasma used in simulation.

Based on our previous theory[3], the nonlinear diffusion will cause a front to propagate
in radius. In the absence of dissipation, the front will propagate indefinitely with its shape
being maintained. The front propagation stops when the radial flux due to propagation
is balanced by dissipation. We can estimate the extent of turbulence spreading into the
linearly stable zone by equating the time required for the front to propagate a distance
A to the inverse of the linear damping rate, which increases with radius.

We have obtained a simple formula which shows that the extent of spreading increases
with the intensity and decreases with the linear damping rate, i.e., A o< y/V;/|y|". There-
fore, the results depend on the profiles used. One can extend the previous calculation by
including the damping from the E x B shearing rate, and we can get a rough prediction
of the turbulence spreading extent as a function of the E x B shearing rate profile from
the same procedure.

4. Nonlocal neoclassical transport

For neoclassical transport, the nonlocality is caused by ion drift orbits whose width
can be larger than the local minor radius and/or the plasma equilibrium scale length. Our
global neoclassical particle simulation using GTC-Neo[23], which includes nonlocal physics
due to large orbit effects, studies neoclassical physics of NSTX plasmas. It is observed that
neoclassical transport in NSTX plasmas exhibits a nonlocal nature. Typically, near the
magnetic axis, the ion heat flux is decoupled from the local temperature gradient, breaking
the Fick’s law type gradient-flux relation. As shown in Fig. 5, our simulation predicts an
outward ion heat flux, even for a reversed local V7; near the magnetic axis, which is in
the same direction as the experimental measurement. For a wide range of NSTX shots,
nonlocal effects generally bring the simulated ion heat transport into closer agreement
with the experimental measurements. Our neoclassical simulation is also being extended
to anisotropic plasmas with large flows, a theoretically unexplored experimental condition,
for a better understanding of large poloidal flows observed in DIII-D experiments|24].
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