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Abstract. (1) The stability of ideal ballooning-peeling MHD modes is examined in the presence of external 
magnetic field perturbations. It is demonstrated that external field perturbation can increase the threshold of MHD 
modes. It is also shown that this effect should be much more important under ITER conditions than in the present 
devices like D-III D. (2) We also report a simple self-consistent theoretical model of multi-scale interaction of edge-
localized modes (ELMs) such as the ideal ballooning-peeling modes interacting with zonal magnetic fields and 
zonal flows. The dynamics of self-consistent zonal flows in relaxation of ELMs is unimportant when beta exceeds 
beta critical and the edge pedestal is unstable to ideal mode. The secondary instabilities of zonal fields are used to 
estimate saturation level and energy flux induced by ballooning-peeling mode turbulence. (3) The linear instabilities 
of non-ideal curvature driven modes, including the influence of trapped electrons and electron inertia in the weakly 
collisional edge of hot reactor like plasmas, are investigated. Fluid theory for the weakly collisional edge tokamak 
plasma in the presence of trapped electrons has been used. Even when the plasma beta is less than its critical value, a 
robust non-ideal curvature driven instability persists in the presence of electron inertia and trapped electrons effects.  
 

1. Introduction 
 

This paper is naturally divided into three parts: 
(I) Mitigation of ELMs by external magnetic field perturbations. – Edge Localized Modes of type-I 
(ELMs-I) are an intrinsic feature of the high confinement H-mode in tokamaks [1]. ELMs can lead to 
a dramatic increase of the impurity production and cause cyclic heat loads on divertor plates. 
Therefore, it is crucial to find a way to mitigate ELMs without negative consequences to the plasma 
properties. Recent experiments on the tokamak D-III D [2] have demonstrated that by applying 
external magnetic field perturbations from the so called I current coils large ELMs of type I can be 
effectively mitigated without any significant loss of confinement properties.  This mode of operation 
is highly desirable for future fusion reactors and therefore it is very important to achieve an 
understanding of physical mechanism leading to ELMs mitigation through external field 
perturbations. Up to now the increase of transport in the barrier between ELMs is considered as the 
main cause of the ELMs mitigation by the perturbations from I coils [2]. This leads to a reduction of 
the pressure gradient under the threshold level for ballooning-peeling MHD modes, whose 
development causes, as it is widely believed, ELMs of type I [3]. In the present paper we 
demonstrate that, in addition to this mechanism, external perturbations can increase the threshold of 
MHD-modes through non-linear interaction with them. In order to qualitatively elucidate the 
importance of nonlinear effects character, we perform our analysis by using parametric instability 
technique [4], which allows an analytical treatment. In the linear part our approach is relatively 
simple, it provides the threshold of ballooning-peeling MHD modes in an agreement with well-
known numerical codes, e.g., MISHKA. It is also shown that non-linear effect from external 
perturbations can be much more significant in ITER with larger dimensions and stronger magnetic 
field. 
 

(II) Secondary instabilities of large scale magnetic fields in the background of short scales ideal 
ballooning mode turbulence. - The physics of Edge-Localized Modes (ELMs), characteristic 
excitations of the H-mode transport barrier, is a topic of great interest for confinement physics. Edge 
Localized Modes (ELMs) have a strong effect on the particle and energy losses from the edge 
transport barrier and also influence the global confinement behavior in H- mode plasmas. In order to 
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assess this influence by means of transport modeling and to make predictions for the ELM effect in 
ITER and DEMO, one has to estimate the nonlinear saturation level of ideal ballooning-peeling 
instabilities responsible for the excitation of ELMs. Here, we present a simple self-consistent 
theoretical model of multi- scale interaction of ELMs governed by ideal ballooning mode with zonal 
magnetic fields and zonal flows. The influence of zonal fields and zonal flows on short scale 
ballooning turbulence (i.e. ⊥⊥ < kq where ⊥q  and ⊥k  are perpendicular wave vector of long scale 
mode and short scale ballooning mode, respectively) is calculated from standard wave kinetic 
equation via modulation of linear growth and frequency of short scale ballooning mode. The 
equations for slow, long scale zonal field and zonal flows follow from fast time/space-averaged 
equations for parallel electron momentum and vorticity respectively. It is shown that when cββ > , 
and the edge pedestal is unstable to ideal ballooning mode, the magnetic Reynolds stress completely 
suppresses the zonal flow growth in ballooning mode turbulence. Thus, the dynamics of self-
consistent zonal flows in relaxation of ELMs is likely to be unimportant. We next concentrate on the 
nonlinear coupling to the zonal fields. As interest here lies in studying the saturation of ballooning 
mode by back reaction of zonal fields so first we present the instability of long-scale zonal magnetic 
field with 0≠rq  and 0, || =qqθ , ( ||,, qqqr θ  are the radial, poloidal and parallel wave vectors 

associated with secondary instabilities). This can be viewed as a fast dynamo action by ideal 
ballooning instability. The interactions show possible excitation of secondary instabilities. In the end, 
a simple zero-dimensional model [5,11] will be presented to estimate the saturated amplitude of 
ballooning modes interacting with large-scale dynamo instabilities and some estimates of edge 
pedestal transport will also be made. The secondary instabilities of large-scale magnetic field with 

0,, || ≠qqqr θ ; this can be viewed as an interaction of ideal ballooning mode with tearing instability 

will be published elsewhere. 
 

(III) Collisionless ballooning instability in tokamak edge. - Large amplitude density and potential 
fluctuations are routinely observed in the edge region of tokamaks. If the edge temperature is low, 
then resistive ballooning mode [1] offers a reasonable explanation for the observed fluctuations. As 
one goes towards hotter tokamaks, the parallel connection length becomes shorter than the mean free 
path and so the resistive mechanisms are no longer adequate. Since beta is less than beta critical, the 
plasma is typically stable to ideal ballooning instabilities. Non-ideal effects associated with kinetic 
physics and/or electron inertia are then invoked to understand the basic driving mechanism of the 
instabilities.  In this paper we include the effects due to trapped particles in considering the non-ideal 
curvature driven edge plasma instabilities. We give a multiple fluid description of the instability 
physics and ignore effects due to electron temperature fluctuations, ion trapping and wave particle 
resonant effects. Electromagnetic effects associated with the excited perturbations have been 
included as the inductive effect on the parallel motion of electrons is substantial in the collisionless 
case.  Instability has been studied with analytical approximations as well as a numerical code. For 
low poloidal mode number, the instability growth rate is higher for the electromagnetic case. Trapped 
particle effects also become important at low poloidal mode numbers. A number of closely spaced 
eigenmodes appear all across the poloidal spectrum. Our conclusion is that even in the weakly 
collisional high temperature limit, a robust curvature driven non-ideal instability persists in the edge. 
 

2. Linear Stability of Ballooning- Peeling MHD Modes 
 

We consider the simplest model of ideal ballooning and peeling modes. The basic equations for 
normalized potential (φ~ ), parallel vector potential ( //

~
A ) and pressure ( eip ,

~ ) perturbations are: 
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Poisson’s Bracket. The main feature of ballooning modes (BM) can be described from local 
instability analysis. The linear dispersion relation of BM, including local current gradient (kink) and 
weak collisional effects, can be written as: 
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Here the frequencies are redefined by AcqR /ˆ ωω = , Anssy cLckqR /ˆ ρω =∗  and the local edge 

current gradient is evaluated from parallel component of Ohm’s law i.e., edgeJE ><= 0////// η  and 

thus Te
edgeedge

r LJJ 2/3~ 0//0// ><><∂  and taking weak collisional limit i.e., 

1)ˆˆ(/51.0 2 <ωα−ωΩΩν ∗⊥ eieAe cqRk . It is apparent from Eq. (4) that the peeling term reduces the 
β  threshold and makes the ballooning mode more virulent.   The stability condition with kink effects 

is 1|/|)/22.11( 22/1 <βε+ ⊥ drdRqLk n . The dissipative instabilities near the marginal point play a 
significant role since )%7060( −  of input power is accounted by these instabilities. 
Computer simulations and analytical work on stability of pedestal to the ideal ballooning with ion 
diamagnetic effects have demonstrated that the near marginal point, the typical poloidal wave 
number of ballooning mode is 1≈Rk δθ , where 3/122 )]1(2/[ isiR R τρτδ +=  [8]. Thus, for the plasma 

edge conditions with 43/ −≈rR , cmLn 32 − , cms 15.01.0 −≈ρ , the relative contribution from 
the peeling effect is comparable with that from the ballooning one. 
 

In the absence of diamagnetic effects ( ∗> ωγ ), the growth rate for the mode with near the marginal 

condition [i.e., 2
00//

2 2/31/)( ATei
edge

anaeiie ckenLJRqLRq ⊥Ω><−≈+ βατα ], the growth rate of 

dissipative BM is 3/123/12 ]/51.0[]/)[(ˆ ieAeneiie cqRkLRq ΩΩνβατ+α≈γ ⊥ . This mode is also known as 
dissipative ballooning mode [9]. Note that even small fraction of dissipation can stimulate instability 
with significantly large growth rate. Near the marginal point and including diamagnetic effects with 
limiting case ωω >∗ˆ , we can recover purely growing dissipative mode, which develops on slow 
resistive time scale and independent of wave number [10]: 

)(/))(2(1
iieiiieenee RmmL αταατ+αβν≈γ − .   

 

3. Suppression of MHD modes through nonlinear coupling with external field perturbations 
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We use the standard techniques of parametric instability in four-wave interaction process where 
pump is low frequency [4]. The external magnetic field perturbations are represented as oscillations 
of the vector potential )exp()(

~
000//0 yiktirAA +−= ω  with the harmonic amplitude 0

~
A  much larger 

than that of MHD fluctuations.. External perturbations can be considered as a pump wave which 
interacts with the MHD modes through the generation of side bands at the frequencies 0ωω ± , 

02ωω ±  and so on. This interaction through side bands can suppress the main perturbations at the 

frequency ω.   Henceforth, only two side bands with 02,102,1 , kkk
���

±=±= ωωω  will be taken into 

account. We neglect the potential and pressure perturbations on the scale of pump wave ( 00 ,k
�

ω ). By 

accounting for non-linear terms on fluctuations in the main MHD mode ( k
�

,ω ) with the accuracy of 

terms up to order 
2

0A  in the right hand side of Eqs. (1-3), the nonlinear dispersion relation of 

Ballooning-peeling modes can be written as: 
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Here kε  is the linear dispersive function of ballooning-kink mode. For the experiments with I coils or 

ergodic divertor ωω <0 , ⊥< kk0  and by taking into account 22 )/)(/(/ Rsnnae RLLRq δρβ >> , 
which is relevant for the H-mode pedestal region, the growth rate of ballooning peeling modes: 
 

2/1222/12 ])/()/(1)/22.11(|/|)[/( BBqRLdrdRqqRc rRnRAk δδ−−εδ+β=γ             (7) 
 

Physically, the reduction of the growth rate by the external perturbation is due to the fact that they 
bring additional field line bending. In order to overcome this, the unstable mode should generate side 
bands and this reduces the energy reservoir of the instability. It is interesting to note that this effect is 
similar to the magnetic Reynolds stresses role in stabilizing the streamers and zonal flows in drift 
wave driven turbulence through random magnetic shearing.                                          
Eq. (7) predicts that the stabilizing effect of external perturbations becomes essential if 

qRbBB Rcrr /|/| δδ ≈≥ . For the DIII-D conditions with TB 6.1= , mR 72.1= , 7.395 =q  and the 

pedestal temperature of eV250  [2], this critical level is of %15.0≥crb . It is interesting to note that 

since 13/2)( −−α qRBbcr  one can expect a significant decrease of the critical perturbation level in 
ITER with TB 3.5=  and mR 2.6= , by a factor of 5. Moreover, one should keep in mind that the 
considered effect works synergistically with the increase of transport by external perturbations 
between ELMs. Our calculations of the plasma parameters in the barrier, which will be published 
elsewhere, demonstrate that owing to this synergy ELM mitigation can be achieved simultaneously 
with a significant increase of the plasma pressure in the pedestal.  
 

4. Secondary instabilities of large scale magnetic fields in the background of short scales ideal 
ballooning mode turbulence 
 

Here we investigate the modulational instability of poloidally elongated zonal fields and zonal flows 
(i.e. zyx qqqsayorzyx ,0//,0/ >>=∂∂=∂∂≠∂∂ ). Equations (1-3), the linear dispersion 

relation of short scale ideal ballooning mode gives; Real frequency: 2/ˆ )0(
yirk kαω −≈ , and growth 

rate: 2/12
||

)0( )/ˆ2(ˆ enik k β−εα≈γ . And near marginal point i.e., 1/2 ≈pie LRqβ , the growth rate of 
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short scale dissipative mode, accordingly that 3/12
||

2)1( )/ˆˆˆ2(ˆ ek kk βη=γ ⊥ , where )ˆ/(2ˆ ee χβη = . If we 

discard the equilibrium gradient in Eqs (1 – 3), these equations satisfied the conservation law,  
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a.  Large scale zonal field instability. - We assume that there is a sufficient non-axisymmetric in the 
spectrum, which separates long scale zonal magnetic fields ( qq

�
,Ω ) and small scale MHD mode 

( k
�

,ω ). The equation for slow, long scale zonal fields / zonal flows are the averaged over fast time 
and space scales the vorticity and parallel electron momentum equations, 
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The nonlinear terms in Eqs (8) and (9) can further be simplified via a quasilinear relation between kφ̂  

and kA||
ˆ , which is given by relation kkekrkk ikA φωβγ−ω≈ ˆ|ˆ|/)ˆ(ˆ2ˆ 2

|||| .     Neglecting electron 

inertia effects and assuming the wavelength of zonal fields 1/ <pexcq ω , the equation of the 

equation of zonal flows, qφ̂  and zonal field, kA||
ˆ  are:  
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The response of zonal fields and zonal flows on turbulence can be calculated from standard wave 
kinetic equation,  
  

22= kkknlkknlxkxnlkkt NNNNN ω∆−γ∂⋅ω∂−∂⋅ω∂+∂ ����                                                 (12) 
 

Here nlω  and nlγ  are the frequency and growth rate of the MHD mode and the steady state balance 

leads to mixing length saturation kkkN ωγ ∆/2~ . In the limit ⊥< kqx , the action density ( kN ) of 

background short scale turbulence is conserved and defined as kkk EN ω/= ; kE  is the energy of the 

underlying turbulence and kN  is defined as:  
 

2|ˆ| kkkN φΛ= , And ]|)|/ˆ(|)|/ˆˆ2([ˆ 22
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The action density ( kN ), rkω̂ , and kγ̂  fluctuate due to slowly varying fields. Here the linear 
frequency is modified due to slow variation of Doppler shift and the growth is modified due to slow 
variation of parallel wave vector,  
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(14) that the both electrostatic potential and magnetic field of long scales (i.e., ⊥< kqx ) are 
generated in the MHD turbulence. Introducing the Fourier transform in equation (12), the response of 
slow varying fields can be written as    
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The evolution of zonal flows (10) and magnetic field (11) are closed via response of 2|ˆ| kφ  and 

through quasilinear approach, from equation (13) it can be expressed as, 2|ˆ| kkkN φδδ Λ= .   
From equations (10-15) the growth rate of zonal flows and zonal fields recognized as:   
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Here φν is the neoclassical collisional damping of zonal flow, and whereas 2ˆˆ ⊥kη  is the resistive 

damping of zonal fields.      
      . 
We now compare the growth rates of linear MHD modes, large scale zonal flows and magnetic 
instability with Alfven time scale for that we write the growth rates of above instabilities in un-
normalized form; (1) The growth rate of ideal mode: 2/1)0( ]1)[/( −β≈γ cAk qRc , (2) the zonal flows 
and zonal field growth rates are:                                                                                               
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Here pic LRq /2ββ = , ei TT = , the parameter 3/12 )]/)(/51.0[()( iAeee cqRkf ΩΩ≈ ⊥νν and 

qRk /1|| = , )1( −Θ cβ is the Heavy-side function. It is important to note that when 1≥cβ  the ideal 

ballooning mode is unstable, the magnetic Reynolds stress effects completely suppresses the zonal 
flow growth. Thus, the dynamics of zonal flows in ELMs relaxation is unimportant when 1≥cβ . 
 

b.  Estimations of transport in pedestal. - The turbulent radial heat flux is given by  
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For krk γω < , the Fick’s law piiiQ Lpdxdp // 0χ=χ−=Γ  yields the turbulent heat diffusivity, 
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To estimate the saturated level of ELMs, we write the coupled system of zonal fields and ballooning 
mode that are like ‘Predator-prey’ type equations for >Φ< k  evolution equation of ballooning mode 

and qA|| , driven zonal field equations [11], 
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steady state, balancing the growth of zonal fields and damping due to resistivity sets the turbulent 
level, and that yields 00 / αη>=Φ< k . Then, the turbulent thermal diffusion coefficient for zonal 

magnetic field saturation is: )1)(/(42.1 2/3 −βνβχ=χ −
ciAepee

GB
ii mcmL .  

                                                                    
 5. Collisionless ballooning instability in tokamak edge                                        
 

We study the linear instabilities of non-ideal curvature driven modes using fluid models, including 
the influence of trapped electrons and electron inertia in the weakly collisional edge. This fluid 
model is a reduced formulation of the standard Weiland model extended with a trapped fluid 
treatment [12]. The model equations consist of ions, trapped and untrapped electrons continuity 
equations, and parallel electron momentum equations for untrapped electrons. The ion and trapped 
electron mode fluid model reasonably symmetric except for the FLR terms in the ion fluid and 
collision between passing and trapped particles terms in trapped electron fluid. We have further 
simplified our model assuming uniform temperature for all species and for qRce /~ω ; the wave 
particle resonant effect has been neglected for the simplicity. These equations are: 
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Combining Eqs (22-23) yields 
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)1( 2222 θ+= θ⊥ skk . We now solve the Eq. (25) for hotter plasma edge parameters: eVTT ie 300== , 
12108×=n , ma 8.0= , mR 6.2= , TBT 4= , 5.31.0 −=s , mLn )1.002.0( −= , and qRf >λ . We 

use a finite difference code with boundary condition 0=ψ at ∞=θ  and 0=ψ′  at 0=θ  and 
frequencies are normalized with electron transit frequency ( qRcete /=ω ). As it is shown in Fig. 1(a) 
that the growth rate of electrostatic mode (dashed) is dominate over electromagnetic mode for 
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200>m . These eigen-modes having maximum growth at different value of m , which are well 
localized in θ -space. Electrostatic mode has maximum growth rate at 750~m  (that gives 

4.0≈ρθ sk ) for small value of RLn / . Fig. 1(b) shows the growth of electrostatic (dashed) and 
electromagnetic (solid) modes. Both perturbations show maximum growth rate at 600=m . It is to 
be noted that the growth rate of these modes with trapped electron effects is higher than without 
trapped particle effects. We also observe the magnetic shear destabilization of short wave the mode 
( 200>m ). 
 
 

       
FIG. 1 (a) the growth rate versus m  for electrostatic (dashed line) and electromagnetic (solid line); 
(b) growth rate versus m  without trapped electron effects. 
 

A detailed understanding of particle and energy transports in the presence of external magnetic 
perturbations is still an open challenging topic to investigate. Here we have proposed a theoretical 
model for mitigation of ELMs due to stochastic field lines as observed in DIII-D. We have elucidated 
the physics of various modes as potential candidate for explaining the anomalous transport in the 
edge pedestal. The linear stability of ballooning-peeling analysis shows that the kink effect 
significantly modifies the threshold of ballooning mode. In nonlinear instability analysis, we have 
carried out the effect of external field perturbations on the coupled ballooning-kink mode by using 
the technique of parametric instability calculations. It is shown that the back reaction of external 
magnetic field perturbations can drastically modify the threshold of the ballooning-kink mode if 

%15.0/| ≈δ> qRb Rcr  in D-IIID. We also report a simple self-consistent theoretical model of 
multi-scale interaction of edge-localized modes (ELMs) such as the ideal ballooning-peeling modes 
interacting with zonal magnetic fields and zonal flows. The secondary instabilities of zonal fields are 
used to estimate saturation level and energy flux induced by ballooning-peeling mode turbulence. 
Finally, the linear instabilities of non-ideal curvature driven modes, including the influence of 
trapped electrons and electron inertia has also been investigated using simple fluid model. Even when 

cβ<β , electron inertia and trapped effects can derive a robust non-ideal curvature driven instability. 
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