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Abstract. We report on progress in understanding the multi-scale dynamics of drift wave tur-
bulence. Significant progress has been made on a) tearing mode and low-q resonance coupling
to the inverse cascade in drift wave turbulence, b) the theory of turbulence spreading, c) the
non-diffusive transport of toroidal momentum and d) L-H transition dynamics and the pedestal
width. In this paper, special attention is focused on multi-scale convective cell and shear flow
dynamics and ITB formation at low-q resonances.

1. Introduction

Multi-scale phenomena involving drift wave turbulence are ubiquitous in confined plasmas.
One example of a multi-scale phenomenon involving drift wave turbulence which has received
considerable attention in recent years is the problem of zonal flow dynamics and its impact
on confinement [1]. In this paper, we report on recent progress in understanding the multi-
scale dynamics of drift wave turbulence. In view of the length constraints imposed here, the
focus of this paper is on convective cell shear flow dynamics and its role in internal transport
barrier (ITB) formation at low-q resonances. However, we would like to remind the reader
that we have recently made significant progress on tearing mode and resonant-q coupling to
the inverse cascade in drift wave turbulence [2], the theory of turbulence spreading [3], the
non-diffusive transport of toroidal momentum [4], and L-H transition dynamics - in particular
an exact analytical solution of the minimal model of the L-H transition and a study of its
implications for the width of the H-mode pedestal [5]. For details on any of these, the reader is
directed to our recent publications cited above.

2. Electrostatic Convective Cells, Low-q Resonances and ITBs

Understanding of transport barrier formation in the vicinity of low-q rational surfaces remains
a popular topic but an elusive goal [6]. Many candidate mechanisms have been proposed [7].
These include, but are not limited to: magnetic islands creating local, sharp gradients in profiles,
sheared electric fields responding to magnetic topology changes or energetic particle dynam-
ics, “rarefaction” of resonant surfaces and its effect on global (i.e. ballooning) modes [8], or
‘zonal flows’ forming at ‘profile corrugations’ near low-q resonances [9, 10]. Detailed GYRO
simulation results [10] have been invoked to support the zonal flow and corrugation hypothesis,
but these investigations left ample room for further analysis and theoretical work. In particular,
the central question ofwhy zonal flows are linked to low-q resonances remains unanswered. In
this paper, we build upon our previous work on multi-scale interaction [2] to propose a simple
model of how electrostatic convective cells trigger ITB formationnear, but notat, low-q reso-
nances in plasmas with weak magnetic shear. This model directly relates flow profile structure
to the presence of low-q resonances.
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Figure 1: a.) Sketch of pressure profile in presence of vortex mode. Broken line corresponds
to original pressure profile and the solid line corresponds to corrugated profile. b.) Profile of
Reynolds stress driven flow (dotted) and fluctuation envelope (solid).

A major challenge to any model of ITB formation at low-q resonances is the need to simulta-
neously explain the dual experimental observations of:

a) a region of profile flattening (i.e. ”corrugation”)at the resonant surface, which is
suggestive of strong, but localized, mixing or transport in that region,

b) the appearance of a transport barrier, due to strongE×B shear flow, in the region
nearbythe low-q resonance.

Of course, observations a) and b) are compatible, since strong localized mixing can induce the
formation ofE×B shear flows in the layer where∇P and∇n steepen immediately adjacent to
the mixing zone (see Fig. (1a)). In addition, Reynolds stress driven shear flows are necessarily
strongest in regions of large fluctuation intensitygradient, so alocal maximumin the fluctua-
tion intensity profile can result in the formation of a dipolar shear layeraroundthe resonant-q
(see Fig. (1b)). Considered together, all this suggests that thefine structure of the turbulence
intensity profile is the critical element linking shear flows to a low-q resonance. Thus, in this
paper we focus on the question of how low-q resonances ‘structure’ the turbulence and shear
flow profiles in order to trigger ITB formation. Our central thesis is that electrostatic convective
cells naturally form at low-q resonances, and locally flatten profiles at the resonance while they
drive shear flows nearby. Two possible mechanisms for cell formation are examined, namely:

a) modulational instability-induced growth of a lowm, n convective cell resonant atrs,
such thatq (rs) = m/n [2]. Such cells naturally flatten profiles over their radial extent
(so producing ‘corrugations’) while simultaneously driving flow shear which (initially)
increases withr − rs, and so is strongest away from the resonance. This scenario is
especially pertinent to weak shear regimes.

b) strong coupling of the numerous radially co-located harmonics excited at a low-q reso-
nance. In this scenario, nonlinear interaction of harmonics alters the underlying eigen-
mode structure, producing a robust, localized peak in the turbulence intensity. Intensity
profile structure of this sort has long been observed in simulations of drift wave turbu-
lence [11]. The locally peaked profile structure naturally drives a dipolar shear layer
around, but not at, the resonant surface, as shown in Fig. (1b). This mechanism is not
limited to regimes of weak magnetic shear.
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We predict a power threshold for the onset of the flow in both cases. Also, in both cases the
resulting shear flow acts to “trigger" anE×B transport bifurcation by a mechanism described
previously [12].

2.1. Secondary Vortex Cell

The secondary vortex cell provides a physical mechanism which combinesboth local profile
flatteningat the resonant surface with profile steepening near it. The physical agent for this is
a low-m secondary convective cell, driven by nonlocal transfer of energy from high-k, radially
co-located drift waves. This structure is a finitem, n analogue of the zonal flow (which has
m = n = 0), and is somewhat similar in concept to the idea of a “convective cell" originally
proposed by Dawson and Sagdeev. These secondary cells are strongly localized near resonant
surfaces, and damped by friction (as are zonal flows), field line bending, viscosity, Landau
resonance, etc. They usually are of negligibly small width in normal shear regimes, but become
broader and stronger in regimes of weak magnetic shear, which are characteristic of the regimes
off-axis minimumq discharges we consider. Interestingly, results of GYRO simulations also
indicate that profile corrugations are wider in weak shear than in normal shear [13, 10] regimes.

Much of the basic theory of the secondary electrostatic vortex cell is presented in Ref. [2]. A
minimal description of the structure requires two elements, namely a dynamical model of the
large scales which incorporates stresses induced by small scales and a model of the turbulence
and how it responds to large scale cellular flow.

a) Dynamical Model of the Large Scales

The simplest example is reduced MHD, including vorticity advection by small scales which
produces the fluctuation Reynolds stress, i.e.
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b) Model of the Turbulence

Here, wave kinetics [1] provides the simplest framework, and allows us to evolve the mean
intensity of the drift wave turbulence according to
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The notation in Eqns. (1,2) is standard, and is discussed extensively in Ref. [2].〈N〉 is the
averaged wave quanta density, which evolves by k-diffusion due to flow shear, spatial diffusion
due to flow advection, linear growth and local interaction,γd is the scale-independent flow
damping due to trapped-untrapped friction, andνc is the collisional viscosity. Here,
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q

R (k, q) q2
y |φq|2 . (3)
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Also, R (k, q) = γk/
[
γ2

k + (ωq − vgr · q)2] is the resonance function controlling the interac-
tion time between drift wave and cell.

For ∆′ > 0, Eqns. (1,2) describe a tearing mode, modified by coupling to drift wave stresses
and the associated inverse cascade, as discussed in Ref. [2]. For∆′ � 0, the physical entity
described by Eqns. (1,2) is a localized low-m electrostatic vortex cell, which is a secondary
structure excited by the ambient turbulence. In this limit, one can follow the two-scale, adi-
abatic renormalization procedure used in Ref. [2] to derive a Fourier transformed evolution
equation for the vortex cell
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Here again, the notation is standard (see Refs. [1, 2] for details). For∂ 〈N〉 /∂kx < 0 (al-
ways true for drift wave turbulence),νT < 0, so the effective turbulent viscosity isnegative,
which corresponds to pumping of large scales by small scales as in an inverse cascade. Also,
keep in mind that the effects of turbulent vorticity advection will no longer appear as a simple
viscosity for largeqx, on account of the intrinsicqx-scaling ofR (k,q). Eqn. (4) also takes
q‖ = qy (x/Ls), wherex = r − rm,n andrm,n is the location of them,n rational surface.

Eqns. (2) and (3) constitute a closed, self-consistent description of the dynamics of a low-m,
electrostatic vortical cell evolving in the presence of drift wave turbulence. Unlike the zonal
flow, the resonant finite-m vortex cell drives radial transport (sinceṽr 6= 0) and also is damped
by field line bending (or, more generally, Landau damping) and collisional viscosity, as well
as by trapped-untrapped friction. Thus, the vortex cell is more strongly damped than the zonal
flow, which is (linearly) damped only by collisional friction. The width of the cell is determined
by the interplay between field line bending (i.e. magnetic shear!) and viscosity. Thus, we see
that finitem, n vortex cells are alway tightly localized atk·B = 0 resonances and more damped
than zonal flows, and so are usually subdominant to zonal flows. However, in the weak shear
regimes characteristic of off-axis minimumq plasmas, they can be considerably broader and
less damped than in normal shear regimes, and so are an attractive candidate for explaining the
simultaneous appearance ofneighboring regions of flattening and shearing, as noted earlier.
Of course, zonal flows, which havẽvr = 0, cannotthemselves produceflat spots in profiles at
resonances. We also note that GYRO simulations indicate that corrugations are radially wider
in weak shear regimes, consistent with our expectations for the secondary vortex cell [13, 10].

Eqn. (3) may be solved as an eigenvalue problem in order to determine the flow shear profiles
and saturated turbulence levels of the coupled drift wave-vortex cell system. Here, the drift
wave turbulence intensity is the “eigenvalue” and the cell flow profile is the “eigenfunction”.
To this end, it is convenient to write|νT (qx)| as

|νT (qx)| ≈ c2s
γk

γ2
k + (qxvgr)

2 〈N〉 ≈
4DGB

1 + (4ρsqx)
2

〈N〉
NML

, (5)
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Figure 2: a.) Saturated intensity of drift wave turbulence for three values of viscosity for the
parametersγd/γk = 1, η/DGB = 1/10, β = 1/20, m = 2, andρ∗ = .01. The solid curve
corresponds toνc/DGB = .01, the broken curve toνc/DGB = .05, and the last curve to
νc/DGB = .1. b.) Sketch of radial potential profile of the vortex cell.

Herevgr/γk ≈ 4v∗e/ω
∗
e ≈ 4ρs, NML = (ρs/Ln)2, andDGB = (ρs/Ln) csρs is the usual gyro

Bohm diffusivity. A lengthycalculation than gives the eigenvalue condition:
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HereN = 〈N〉 /NML, ν̂c = νc/DGB, Γ = γd/γk, ζ ≡ (1/8) ((N − Γ) /ν̂c − 1/4) + 1/16,

zc = (1/8)
√

((N − Γ) /ν̂c − 1/4)2 − Γ/ν̂c, andδ is a small shift neglected hereafter. E and K
are complete elliptic integrals. Expanding to first order inν̂c (noteν̂c � 1, here), we derive the
‘eigenvalue’ relation for the saturated turbulence level, namely:
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Eqn. (7) clearly shows the dependence of turbulence levels on both friction and line bend-
ing. Also, even thoughνc/DGB � 1, terms ofO (α) can be significant, on account of the
(N − Γ)−2 factors. This surprisingly strong dependence ofN on collisional viscosity and field
line bending can be understood by considering the synergy between these two effects. Stronger
field line bending (i.e. from strong magnetic shear) localizes the cell more sharply, so in turn
the rapid variation of the cell eigenfunction becomes more sensitive to viscous damping. In
Fig. (2a), the saturated value ofN (i.e. eigenvalue) is plotted vs.Ls/Ln for three different
values of viscosity. The sensitivity to magnetic shear is evident, supporting the assertion that
low-m vortex cells are most active in regimes of weak magnetic shear.

Regarding the vortex cell flow structure (i.e. the eigenfunction), asymptotic analysis of Eqn.
(4) (with νT taken independent ofqx for convenience) yields an approximate expression for the
potential profile of the vortex cell, which is
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φ (x) ∼ 1
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An asymptotic calculation of the vortex cell potential profile is shown in Fig. (2b). The width of
the cell, which sets the scale of the flat spot or corrugation over which profiles are mixed, scales
as∆x ≡ (|νT (0)| η)1/6 (Ls/ (vAqy))

1/3, and increases withLs. Interestingly, thestrength of the
cell’s flow shearscales as

∣∣v′y∣∣ ∼ x1/4, and sogrows with distance from the resonant surface.
This is evident in Fig (2b), as well. These results suggest that the vortex cell will suppress
turbulencenearby, but off,the resonant surface more strongly than it will affect fluctuationsat
the resonant surface. This appears consistent with the dual observations of persistent transport
or mixing at the surface (needed for the local flat spot) along with flow shear suppression of
turbulencenearbythe surface. We also note that the resulting peaked fluctuation profiles can
also drivem = 0, n = 0 shear flows via the Reynolds stress. In that case, theflow drive is
strongestin the region oflargest intensity gradient, which sitsawayfrom the resonant surface,
as sketched in Fig. (2b). Such flows will, of course, also enhance the formation of ITBs.

We add in passing that the tendency to form Reynolds stress driven shear layers at the periphery
of regions of mixing by cell advection is quite consistent with the well known, generic process
of homogenization of potential vorticity in over-turning convective cells [14]. In this process,
shear flow and diffusion combine to expel potential vorticity from the cell, thus creating sharp
vorticity gradients at the cellular boundary. These thin regions of sharp vorticity gradient are the
location of the ‘transport barriers’ at the boundary of the cell. Thus, we see that the coupling
of the two processes of steepening and flattening isgeneric to systems for which vorticity
advection is an important element of the dynamics.

The eigenvalue condition ofN given by Eqn. (7a) implies that a critical drift wave fluctuation
level is required to trigger cell formation. The critical level is simply that fluctuation inten-
sity which is required for the Reynolds stress to drive the cell against friction, line bending,
etc. This, in turn, translates into a power threshold. Using a standard, simple model of ITG
turbulence, we can write the heat flux in terms ofN as

Q = qr = −χcrit
∂Ti

∂r
≈ vthTiηiε

−1/2
T τ 2N . (9a)

Applying power balance givesPin ∼ RrbvthTiηiε
−1/2
T τ 2Ncrit, where
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)2/3
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Hererb is the radius at which the barrier is located and the rest of the notation is standard. Not
surprisingly, the power threshold increases with increasing collisional friction, magnetic shear
strength and viscosity. Note also that the strength of the total flow damping, rather than the oft-
invoked but naiveγL vs.ωE×B criterion, is what sets the threshold for vortex cell formation.

2.2. Strong Coupling of Resonant Harmonics

A second mechanism for producing local fluctuation intensity maxima and profile corrugations
works by strong nonlinear coupling of the many harmonics which are naturally co-located at a
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low-q resonance. In this mechanism, coupling of harmonics, rather than secondary instability,
leads to formation of an electrostatic convective cell at the low-q resonance. Harmonic cou-
pling was extensively studied in the context of drift wave turbulence in Ref. [11], albeit for
an extremely simple model. That study revealed that the spatial profile of fluctuation intensity
develops local peaks at low order rationals on account of the alterations (of both the eigen-
mode structure and how it couples to dissipation) which are induced by the strong, localized,
nonlinear interaction of the many harmonics. Spatial intensity profile peaks were predicted
and observed to form such ‘single helicity structures’ when the strength of interaction between
the resonant harmonics exceeded the strength of multiple helicity interaction with neighboring
modes. Since formation of local intensity maxima were observed to occur in normalq profiles,
it seems reasonable to speculate that the rarefaction of resonant surfaces around a low-q reso-
nance caused by weak magnetic shear (characteristic of off-axis minimumq discharges) will
only enhancethe tendency to form peaks in the turbulence intensity profile.

The analysis of Ref. [11] did not address the dynamics of a self-generated (i.e. Reynolds stress
driven) flow and its interaction with the local intensity maximum. Here we extend that analysis
to determine the profile of the self-generated flow which coexists with the intensity maximum,
as well as the threshold for growth of the self-generated flow. The fluctuation induced Reynolds
stress can be straightforwardly computed using the nonlinear mode structure given in Ref. [11].
For the case of a narrow shear layer, the resulting stationary shear flow profile is

vy
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2
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cs

ωci
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)2 x
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Here the notation is that of Ref. [11],(αh)
−1/2 is the intensity profile width. Note that the

resulting shear layer is dipolar, localized to an intensity profile width of(αh)
−1/2, and stronger

for weak magnetic shear. The critical intensity for triggering growth of the flow is given by

∫
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sk
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) (
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)
. (11)

Obviously, the critical intensity level can easily be converted to a power threshold by the proce-
dure outlined in Section 2.1. It is not surprising that the critical power increases with the flow
dampingγd while decreasing for weaker magnetic shear. The structure of the single helicity
intensity profile and flow profile are shown in Fig. (1b).

3. Scenario for ITB Formation

As the last element of this discussion, we remind the reader that the Reynolds stress driven
shear flow discussed here will act as atrigger for ITB formation, which occurs intwo stages
[12]. In the first stage, growth of sheared flow begins whenP & Pcrit, resulting in a moderate
reduction in fluctuation level, and thus a steepening in the local pressure and toroidal velocity
gradients. In the second stage, the electric field shear from the steepened∇P andvφ is sufficient
to severely quench or extinguish the fluctuations, so that a recognizable ITB forms. However,
the quench of fluctuations means that the Reynolds stress driven flow damps away, so the
dominant contributors toE ′

r in the “end state” ITB are∇P andvφ. This evolutionary sequence
is illustrated in Fig. (1) of Ref. [12]. The role of Reynolds stress driven flows as a trigger is



8 TH/2-4

suggested by the observations that at high power, ITBs can form in the absence of resonant-q,
and that the incidence of ITB formation is sensitive to the mean electric field shear, which can
be changed by varying the mixture of co and counter injection [15].

4. Conclusion

This paper has discussed the application of recent advances in our understanding of multi-scale
interaction processes in drift wave turbulence to the problem of understanding the fluctuation
intensity profile structure near low-q resonances and its implications for the mechanism by
which ITBs are triggered there. Two mechanisms for generation of localized electrostatic con-
vective cells at the resonant surface are discussed. One involves low-m secondary structure, the
other is based on strong coupling of resonant harmonics. Which of these two mechanisms is
dominant is a quantitative question, the answer to which requires a detailed, case-by-case anal-
ysis. We emphasize, too, that the two mechanisms arenot mutually exclusive andcanwork in
synergy. In both cases, the models analyzed are extremely simple, so much further work is re-
quired. Trapped ion modifications may be particularly important for low collisionality regimes,
and should be explored carefully.
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