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Abstract. A linear analysis of the magneto-hydrodynamic stability of the Z-pinch plasma with axial flows is 
presented. The effects of compressibility, viscosity, and various profiles on the magneto-Rayleigh-Taylor 
instability are investigated respectively. Results indicate that, plasma compressibility plays an important role 
in the early stage of the implosion, and should be considered when estimating the growth rate. In the case 
without axial flows the effect of the viscosity seems nonsignificant, but the hybrid effect with the sheared 
flow should be calculated accurately if a sheared axial flow was present. The analysis of different axial flow 
profiles shows that, the mitigation effect of the axial flow on the MRT instability is caused by the radial 
velocity shear, and it is highly susceptible to the shear value nearby the plasma outer surface. By optimizing 
the flow profile, the mitigation performance can be promoted evidently. 
 
1. Introduction 

The electromagnetic implosions of Z pinches, which were used widely as an efficient and 
cost effective x-ray source to produce intense x-ray radiation[1,2], are highly susceptible to the 
magneto-Rayleigh-Taylor (MRT) instability, which results from the inward radial acceleration 
of the plasma by the magnetic field and develops rapidly during the imploding. Its 
development may destruct the cylindrical symmetry of the imploding shell before an 
equilibrium steady state is achieved and limit the stagnation densities and temperatures can be 
achieved. Therefore, mitigating this instability is important for optimizing the x-ray energy 
and power output. 

 
Recently, the sheared axial flow (SAF) effect is demonstrated, both theoretically and 

experimentally, to be efficient on mitigating the m=0 and m=1 instabilities [3,4]. The results of 
the Zap Flow Z-pinch experiment at the University of Washington showed an axial velocity 
shear about 1.9×107s-1 and a stable period of 17μs which is over 700 growth times.[5] 
Enlightened by these successes, Shumlak and Roderick begin to investigate its possible use of 
stabilizing the MRT instability in dynamic Z-pinch implosions.[6] Their analysis indicates that 
even a linear profile SAF can give a visible suppression on the development of MRT 
instability, especially to the short-wavelength modes. Such a stirring result excites us to make 
further analyze on the SAF effect to the Z-pinch implosions. 

 
To make out a more precise estimation of the growth rate, the research should base on a 

relatively more generous model, which can describe the Z-pinch plasma more accurately. It is  
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Fig. 1. The slab geometry used in the stability analysis. 

well recognized that Z-pinch plasma is a compressible and viscous system, especially at the 
inward accelerating stage during which the MRT instability evolves most rapidly and the 
plasma temperature is relatively low. Results from the astrophysics researches suggests that 
the plasma compressibility has a tendency of reducing the growth rate of the Kelvin- 
Helmholtz (KH) instability, which will developed rapidly in the Z-pinch implosions as the 
SAF introduced.[7] In addition, the stabilizing effect of dynamic viscosity on the reversed-field 
pinch (RFP) also suggests the viscosity may play an important role in Z-pinch implosions too. 
Therefore, it’s instructive to investigate the effects of compressibility and dynamic viscosity, 
which are expected to be helpful, on the stability in Z-pinch implosions with SAFs. The 
limitation of the realizable axial flows we can get presently in laboratories, probably about 1 
Mach[8], also suggests that we should analyze the effects of various flow profiles to 
understand the mitigation mechanism of the axial sheared flow and make an optimization. 
The analyses of compressibility and dynamic viscosity are presented in Sec. 2 and Sec. 3 
respectively. In Sec. 4 the numerical results of different flow profiles calculated with a 
relatively more generous model are shown and the stabilization mechanism of the axial 
sheared flow is discussed. At last, we make conclusions in Sec.5. 

 
2. Effect of Compressibility 
 
 It is well recognized that an annular plasma implosion, particularly produced by a wire 
array, generates x-ray radiation more efficiently than a uniform gas puff implosion. Such an 
annular configuration can be replaced by a slab one while the shell thickness is sufficiently 
smaller than the pinch radius. Consider a plasma slab with a flow v0 and the effective inertia 
force acceleration g caused by a y-direction magnetic field and a z-direction current. All 
parameters vary in the x direction, except g which is constant. The Cartesian coordinate 
system used for the derivation was plotted in Fig. 1. The plasma mass continuity and motion 
equations, which include the plasma viscosity, are as follows, 

 ( )/ 0,tρ ρ∂ ∂ + ∇ ⋅ =v  (1) 

 ( ) [ ] ,tρ ρ ρ∂ ∂ + ⋅∇ = × + ∇ ⋅ +v/ v v J B τ g  (2) 

where all the notations are conventional, and ∇⋅[τ ] is the divergence of the stress-tensor 
including the plasma press and viscous stress. In this section, we neglect the viscosity effect to 
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outstand the effect of compressibility, and the linearized equations become,  

 1 0 1 1 0 0 1/ 0,tρ ρ ρ ρ∂ ∂ + ⋅∇ + ⋅∇ + ∇ ⋅ =v v v  (3) 

 ( ) ( )0 1 0 1 1 0 1 1 0 0 1 1/ ,t pρ ρ∂ ∂ + ⋅∇ + ⋅∇ = −∇ + × + × +⎡ ⎤⎣ ⎦v v v v v J B J B g  (4) 

where each variable is expressed as ξ0+ξ1 and index 1 denotes perturbations of steady state 
quantities (index 0). Usually, the incompressible assumption is used to simplify the derivation. 
However, it also makes the effects of the plasma compressibility and magnetic field 
undetectable. Considering the plasma temperature at the imploding stage we concerned is 
relatively low and the SAF velocities to be discussed are comparable to the local plasma 
sound speed, the plasma compressibility becomes an important role. 
 
 Assuming the perturbations vary as exp(−iωt+ik⋅r) and the wave vector k only has z 
component k, we can get the following second-order differential equation for the perturbed 
velocity v1x (see Ref. [9] and [10] for detailed derivation): 
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where D = d/dx, 0kvω ω= −� is a Doppler shift applied to the perturbation frequency ω, and cm
 

= (cs
2 + VA

2)1/2, cs, VA is the plasma magneto-acoustic speed, sound speed and Alfven velocity 
respectively. If the axial flow velocity v0 is independent of x, the problem can be transformed 
to a frame of reference in which there is no equilibrium flow. Then, Eq. (8) can be reduced to 
the same as that with v0=0. 

 
The plasma slab is assumed to be surrounded by vacuums on both sides. To keep the 

pressure balance, the following condition should be satisfied at both plasma-vacuum surfaces 

 ( ) ( )1 0 0 1 1 / 0,m mp p d p p dt⋅∇ + + + =v                       (6)

where pm0 = B0
2/(2μ0)，pm1 = B0B1/μ0. Substituting parameters with v1x into Eq. (6), the jump 

conditions become 

 ( ) ( )2 4 2
0 1 0 0 1 1: / / / ,A m x x xx d k v V c Dv k v Dv v gvω ω⎡ ⎤= − − − + − =⎣ ⎦            (7) 

 ( ) ( )2
0 1 0 0 1 1: / / .x x xx d k v Dv k v Dv v gvω ω= − + − =    (8) 

Since equations (5), (7) and (8) contain no explicit time term, they should be satisfied with 
arbitrary disturbed velocity v1x. These equations constitute an eigenvalue problem, which can 
be solved with a standard numerical technique such as shooting method. (Details of this 
numerical algorithm can be found in Ref. [11]) Unlike the case without flows, the perturbed 
velocity v1x and the frequency ω are both complex, which means the real and imaginary part 
of the jump conditions should be satisfied synchronously.  
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In a previous paper[9] we have made a detailed discussion about the effect of plasma 
compressibility with various unperturbed states (incompressible uniform mass-density profile, 
compressible skin current profile and compressible uniform current profile). The main results 
of that study are as follows. The compressibility does decrease the growth rate of the KH 
instability, which is dominant at the small wavenumber region, in a Z-pinch imploding plasma, 
as well as works within the astrophysics frame. The contribution of the magnetic pressure to 
the plasma elasticity also becomes detectable in such a compressible model. Notice that cm

2 in 
Eq. (5) can be presented as dp*/dρ, where p* is the total pressure including a thermal part and 
a magnetic part. It reflects the resistance of the plasma to the deforming caused by outside 
force. If the plasma was disturbed perpendicularly to the magnetic field, the resistance of the 
frozen-in magnetic field is excited. As the wavelength decreases, perturbations get severe and 
magnetic field resists more powerfully. Because the sound speed embodies the plasma 
compressibility, people can analyze its effect by researching the effect of local sound speed. 
Fig. 2 shows the variation of the growth rate (Γ = Re(−iω) / (kg) 1/2 ) as a function of the 
wavenumber (Κ = 2dk) with different sound speeds, which are calculated with a linear 
flow-profile whose peak velocity is 2×105m/s. The solid line corresponds to the result of 
incompressible case, cs → ∞. As the sound speed decreases, the mitigation effect on both the 
hybrid MRT/KH mode and MRT mode instability becomes efficient. As cs=1×105 m/s with 
K=10, the growth rate is only about 40% of that of the case without SAFs. When the sound 
speed exceeds 8×105m/s (about 1keV for aluminum plasma), the compressible model result is 
close to the incompressible one. At the accelerating process of Z-pinch plasma, during which 
the kinetic energy is dominant, any kind of heating mechanism should be avoided. Therefore 
people usually choose heavy materials to keep the plasma temperature in a low range of 
30-40eV [19], which corresponds to a sound speed less than 1×105 m/s. Therefore, on the early 
stage of the implosion, the compressible model is much more suitable and the mitigation 
effect of SAF performs much better than people estimated with an incompressible model. 

 
3. Effect of Viscosity 
 

 The effect of the plasma viscosity is another important nonideal factor needed to be 
discussed. To analyze the viscosity effect, we have to go back to the basic functions of Eq. (1)  

  
Fig. 2. Normalized growth rates  vs. normalized   Fig. 3. Normalized growth rates vs. normalized         
wavenumber with different sound speeds .       wavenumber with various viscosity coefficients. 
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and Eq. (2). This time we neglect the effect of compressibility. Using the incompressible 
condition ∇⋅v = 0, the perturbation equation derived from the motion equation and continuity 
function becomes 
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where μ (which can be a function of x) denotes the coefficient of viscosity. 
 
 To get proper jump conditions at the interface between two fluids, it’s necessary to specify 
which quantities should be continuous at the interface. Clearly, the velocity, as well as the 
tangential viscous stresses, must be continuous. The continuity of Dv1x follows from 
incompressible condition and the continuity of v1y and v1z. To ensures the continuity of the 
tangential viscous stresses, it’s easy to get the condition that ikμDv0 − μ(D2+k2)v1x must remain 
continuous across an interface. Integrate equation (14) over an infinitesimal element of x 
including the interface, we get the jump condition 
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where △[f] = fx+ − fx- . For simplicity, we set the plasma density and viscosity are uniform 
and the SAF has a linear profile: v0=V0(1−x/d)/2. Therefore the disturbed velocity equation 
and interface conditions can be simplified to 

 ( ) ( )2 2 2 2 2
0 1 1 0 1 0 1 0 1 ,x x x x xk v i D k v D Dv k v Dv i D k Dvωρ μ ωρ ρ μ⎡ ⎤ ⎡ ⎤− − = + − −⎣ ⎦ ⎣ ⎦� �  (11) 
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where we used the general solution formats v1x~e±kx at the vacuum region. Equation (11) and 
corresponding boundary conditions (12) constitute the formulation of the linearized stability 
problem as an eigenvalue problem. Since ω enters Eq. (11) in a complicated nonlinear way, it 
has no analytical general solutions. To gain an analytical dispersion relation, we make V0 = 0 
to simplify such a SAF question to a case without axial flow and Eq. (11) degrades to  

 ( ) ( )2 2 2 2 1
11 0,xD k i D k vγ ω−⎡ ⎤− − − =⎣ ⎦  (13) 

where γ (= μ/ρ) is the coefficient of kinematical viscosity. The general solution of Eq. (13) is 
a linear combination of the solutions e±kx and e±qx, where q = (k2−iω/γ)1/2. Substituting them 
into Eq. (13), the corresponding boundary conditions can be rewritten in matrix notation, and 
we essentially gain the analytical dispersion relationship 
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where it may be recalled that q2 are related to ω. If the plasma has no viscosity, it has a 
solution of ω = i(kg)1/2, which corresponds to the RT instability of an ideal case. Considering 
the complexity of Eq. (14), it’s instructive to study the asymptotic behavior of ω for k→0 and 
k→∞. The dispersion relations for these two limits becomes 

 ( )0 ,i kg kω → →  (15) 

 ( )/ 2 .ig k kω γ→ → ∞  (16) 

The asymptotic relation for k→0 is exactly that which obtains in the absence of viscosity. This 
agreement shows that viscosity plays no role among the very long wavelengths. According to 
equations (15) and (16), ω→0 both when k→0 and k→∞. Therefore there exists a mode of 
maximum instability. With the parameters we used before, the (Γ, K) relationships calculated 
numerically are illustrated in Fig. 3. The four curves correspond to γ = 0.02, 0.35, 0.73, and 
7.2 m2/s respectively (relevantly, the tungsten ion temperature Ti=0.6, 2, 2.6, and 6 keV), 
which have been used in reference [12]. In the wavelength region we are concerned, the 
mitigation effect, which is also suspect to the magnitude of the viscosity, enhances as the 
wavenumber increases. When the viscosity approaches to 7.2m2/s, corresponding to a high 
plasma temperature about 6 KeV, it gives a sufficient mitigation to the growth rate about 80%. 
But during the accelerating process the plasma temperature usually keeps in a low range about 
30-40eV. Therefore, according to Fig. 3, the mitigation effect of viscosity is slight enough to 
be omitted. Although the results presented here suggest that, the viscosity seems insignificant 
to the growth rate, it doesn’t mean that the viscosity isn’t important to the Z-pinch implosion. 
Some researchers have pointed out the plasma viscosity may play a crucial role in the energy 
transition process because of its inherent relationship with anomalous heating mechanism. 
 
 It’s important to note that the upper conclusion is based on a simplified model without 
SAF. As the combination terms of viscosity and SAF exist in the disturbed velocity equation 
and interface conditions, it is necessary to take the combination effect of these two factors 
into consideration when SAFs are introduced. The magnitude of such a hybrid effect, which 
we are interested in and working at, should be directly calculated from Eqs. (11), and (12) 
numerically.  
 
4. Effects of Different Flow Profiles 
 
 Nowadays, the upper limit of the practical peak velocity of axial flows is about 1~1.5 
Mach, which suggests that it’s difficult to improve the stability via increasing the axial flow’s 
peak velocity, and the analysis of different flow profiles becomes necessary. Based on a 
uniform current model which is compressible but not viscous, we investigated the effects of 
the following exponential profiles:[10] 
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   Fig. 4. The velocity shear distributions            Fig. 5. The general distribution of the  
         of different flow profiles.                       perturbed velocity v1x.. 
Distributions of velocity shears and a typical profile of the disturbed velocity v1x are shown in 
Fig. 3 and Fig. 4 respectively. It’s easy to find out the velocity shears of α− and β− profiles 
are symmetrical with x = 0, and the α = 3 case has the most similar curved shear profile with 
the distribution of the disturbed velocity. 
 

Numerical results of different flow profiles with V0 = 2×105 m/s are shown in Fig. 5. The 
diverse mitigation effects show that, when the peak velocity keeps unchanged, the value and 
the distribution of the velocity shear become the crucial factors. The α-profiles, whose peak 
shears concentrate at the outer edge, perform much better than β-profiles. Especially the α = 3 
velocity profile presents the best mitigation effect, and the suppressed growth rate is only 
about 35% of the case without flows at K = 9. Comparing the two cases of α = 3 and β = 3 we 
find that the mitigation effect on the MRT instability, which is performed by the velocity shear, 
is highly susceptible to the magnitude of the shear nearby the outer plasma surface. It is 
known that the MRT instability develops at the interface between the plasma and the magnetic 
field. According to the Z-pinch plasma, perturbations concentrate at the outer surface (x = −d), 
so the magnitude of the flow shear at the outer interface is critical to sustain stability. 
Therefore, within the practical velocity limitation, it’s possible to promote the mitigation 
effect markedly by constructing a suited flow profile. 

 
Fig. 6. The normalized growth rates γ vs. normalized wave 

number K with different flow profiles. 
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5. Conclusions 
 
 The effects of two nonideal factors, compressibility and viscosity, on the MRT instability 
in Z-pinch implosions have been discussed within the magneto-hydrodynamic (MHD) frame. 
The plasma compressibility is demonstrated to be important on estimating the stabilizing 
effect of the SAFs, especially during the linear developing phase of the RT instability. On the 
one hand, the plasma compressibility debases the growth rate of MRT/KH mode. On the other, 
the effect of the magnetic pressure can be reflected in such a compressible system. The effect 
of the plasma dynamic viscosity in a case without SAFs seems neglectable as the plasma 
temperature is relative low, less that 100eV, but the coupling effect with the SAF in an axial 
flow introduced system should be calculated seriously. We have presented the self-contained 
equations to such a question, and will working on it later.  
 
 Various flow profiles are also discussed in this paper. Results presented here suggest that, 
the mitigation effect of the axial flow on the MRT instability is highly susceptible to the 
magnitude of the velocity shear nearby the plasma outer surface (the interface between the 
plasma and the magnetic field), and the mitigation performance can be promoted markedly by 
constructing a suited flow profile. This inspiring result reminds that, when using sheared axial 
flows as a stabilizing method, people should not only increase the peak velocity, but also 
optimize the velocity profile to make the velocity shear concentrates at the outer surface and 
get the best mitigation effect. 
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