Capabilities of Ablation Harmonics to Shorter Wavelengths and Higher Intensity

T. Ozaki, L. Elouga Bom, R. A. Ganeev, J.-C. Kieffer INRS - EMT, Univ. Québec



# Outline

- Ablation Harmonics: A highly efficient method for harmonic generation
- Silver Harmonics: Intense
  sources in the plateau
- Quasi-monochromatic, intense harmonics using indium and tin ablation
- Manganese Harmonics: Extending harmonics to shorter



# High-Order Harmonics

Coherent soft x-ray beams (odd multiple orders of pump) Low-divergence (~ mrad) Ultrashort pulse (femtosecond, and even attosecond) GHarmonic orders > 500, photon energy > 1000 eV, observed niversité du Québec Institut national de la recherche scientifique -6 to  $10^{-7}$ )

CLow conversi

### Femtosecond diffractive imaging with a soft-X-ray free-electron laser





# Ablation Harmonics are Highly Efficient

High conversion (Silver)
efficiency of 10<sup>5</sup> demonstrated in
the plateau (13<sup>th</sup>
~ 31<sup>st</sup>)

 Sub-μJ harmonics already obtained with 10 mJ pump
 Multi- μJ harmonics envisaged with full use of ALLS 150 mJ pump



Institut national de la recherche scientifique

### Ag Ablation Harmonic Intensity as a function of Main Pump Intensity



## Prepulse Intensity has large effects on Ablation Harmonics



## Higher Prepulse Intensity results in Higher Ion Density



# to be Controlled Carefully

#### Gold Harmonics

#### HHG Positive







### Intense Quasi-monochromatic Harmonics from Indium Ablation



Il harmonics disappear with elliptical polarization pump



Institut national de la recherche scientifique

## Other Quasi-Monochromatic Harmonics



### Comparison of Harmonic Spectra with Emission from Over-ionized Plasma



# due to Anomalous Dispersion

Phase-matching condition for  $q^{th}$  harmonic

$$\Delta k \approx N_e r_e (q \lambda_{\omega} - \lambda_{q \omega}) - \frac{2\pi N_a}{\lambda_{q \omega}} \Big[ \delta(\lambda_{\omega}) - \delta(\lambda_{q \omega}) \Big]$$

 $N_{e(a)}$ : electron (atom) density;  $r_e$ : classical electron radius;  $\lambda_{q\omega}$ : wavelength of  $q^{th}$  harmonic;  $\delta$ : neutral atom dispersion

Idea: use anomalous dispersion near strong resonances to compensate for increased phase mismatch due to Ne ... already demonstrated for third harmonic of KrF laser in Ar





nstitut national de la recherche scientifique



# What makes Manganese Different ?

| Ip | lst  | 2 <sup>na</sup> | 3ra  |                      |
|----|------|-----------------|------|----------------------|
|    |      |                 |      |                      |
| Mn |      | 0.61            | 33.0 | Ionization potential |
|    | /.43 |                 |      | not that different   |
| 7) | 0 00 | 20.5            | 30.0 |                      |
| AU | 3.22 |                 | 5    |                      |

Electron density of Ablation (I<sub>pp</sub> = 2 x10<sup>10</sup> W/cm<sup>2</sup>) Simulated by HYADES

Mn:  $3.25 \times 10^{17} \text{ cm}^{-3}$ Au: 14.2  $\times 10^{17} \text{ cm}^{-3}$ 

Under the same prepulse condition, the electron density for Mn is unusually low ... reduced negative effects of free

electrons

# Conclusions

- Ablation harmonics: Intense
   sources of high-order harmonic
   generation
  - Silver harmonics: intense sources in the plateau
  - Quasi-monochromatic harmonics: intense, single-line harmonics
- Manganese harmonics: One step
  toward shorter wavelength
  harmonics
  - Low electron density of ablation medium

