1. GENERAL INFORMATION

1.1. General Overview

Brazil is a federal republic in South America, bounded on the north, west and south by every country of the continent except Chile and Ecuador, and on the east by the Atlantic Ocean, along 7,400 km (4,600 miles) of coastline. The country covers an area of 8,514,215.3 square kilometres, about half of all South America, and is the world’s fifth largest country in area. Stretching for approximately 2,700 miles from north to south and from east to west, it contains no desert, high mountains, or Arctic environments that would limit the extent of human occupancy.

The population of Brazil, as of 2000, was about 170 million. Table 1 shows historical statistical data concerning population. Most Brazilians live in high-density areas of eastern Brazil or along the coast or the major rivers. Although urbanization does not show an actual decline in rural population, internal migration has caused cities to grow much faster than rural areas. Today, about 80% of the people live in urban areas. Many migrants to the cities take up residence in “favelas”, or shantytowns, on the edge of urban areas. The urban poverty and unemployment that accompany swift urbanization are aggravated by a fast population growth rate.

The capital, Brasilia, whose construction started in 1957, was built in the highlands, in order to encourage development of the interior. According to the 2000 estimates, the largest cities of Brazil are: São Paulo, Rio de Janeiro, Belo Horizonte, Salvador, Recife, Brasilia and Porto Alegre.

<table>
<thead>
<tr>
<th>TABLE 1. POPULATION INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann. av.</td>
</tr>
<tr>
<td>growth rate (%)</td>
</tr>
<tr>
<td>1990 to 2000</td>
</tr>
<tr>
<td>Population (millions)</td>
</tr>
<tr>
<td>1960 72.8</td>
</tr>
<tr>
<td>1970 93.0</td>
</tr>
<tr>
<td>1980 119.0</td>
</tr>
<tr>
<td>1990 145.0</td>
</tr>
<tr>
<td>1997 159.0</td>
</tr>
<tr>
<td>1998 161.5</td>
</tr>
<tr>
<td>1999 168.2</td>
</tr>
<tr>
<td>2000 170.4</td>
</tr>
<tr>
<td>Population density (inhabitants/km²)</td>
</tr>
<tr>
<td>1960 8.5</td>
</tr>
<tr>
<td>1970 10.9</td>
</tr>
<tr>
<td>1980 13.9</td>
</tr>
<tr>
<td>1990 17.4</td>
</tr>
<tr>
<td>1997 18.7</td>
</tr>
<tr>
<td>1998 19.0</td>
</tr>
<tr>
<td>1999 19.8</td>
</tr>
<tr>
<td>2000 19.92</td>
</tr>
<tr>
<td>Urban population as percent of total</td>
</tr>
<tr>
<td>1960 45</td>
</tr>
<tr>
<td>1970 56</td>
</tr>
<tr>
<td>1980 66</td>
</tr>
<tr>
<td>1990 75</td>
</tr>
<tr>
<td>1997 80</td>
</tr>
<tr>
<td>1998 80</td>
</tr>
<tr>
<td>1999 81</td>
</tr>
<tr>
<td>2000 N/A</td>
</tr>
<tr>
<td>Area (1000 km²)</td>
</tr>
<tr>
<td>1960 8,512</td>
</tr>
</tbody>
</table>

Source: www.ibge.gov.br - Brazilian institute for geography and statistics; IAEA Energy and Economic Data Base.

The single most important influence on Brazil’s climate is its location on the equator. Temperatures seldom exceed 35°C in the tropics owing to the moderating effects of high atmospheric humidity. Most of Brazil receives a moderate rainfall of 1,000-1,500 mm (40-60 in.), although the Amazon lowlands and several other areas receive more than 2,030 mm (80 in.) of rainfall annually. The semi-arid northeastern interior, or ‘Sertao’, frequently suffers from very long droughts. Tropical rain forest, or ‘Selva’, is found in the wettest part of the Amazon Basin. Much of the south and southwest of Brazil is covered by savanna, or tropical grassland, and in the interior of the northeast, caatinga, a low and bushy scrub and thorn forest is characteristic.

Brazil’s three major river systems are: the Parana-Paraguay-Plata in the south, the Sao Francisco in the east, and the Amazon in the north. The Amazon, the major river of South America, is the world’s second longest river (6,440 km/4,000 miles), and most of its basin lies within Brazil. The Amazon river’s major tributaries are the Tocantins-Araguaia, the Madeira, the Negro, the Xingu and the Tapajos. Brazil’s mineral resources are superlative with many still unexplored. Sizeable deposits of iron and manganese ores have been discovered, but Brazil lacks the high-grade cooking coal needed to transform them into steel. Brazil is a leading exporter of iron. Discoveries of metals and
minerals, including phosphates, uranium, manganese, titanium, copper, coal, and gemstones, are regularly made, particularly in the state of Minas Gerais and the Amazon area.

1.2. Economic Indicators

Table 2 provides the Brazilian Gross Domestic Product (GDP) statistics during the last two decades. Economy’s average annual growth rate was only 2.0 % during the period 1980 to 1998.

TABLE 2. GROSS DOMESTIC PRODUCT

<table>
<thead>
<tr>
<th>Year</th>
<th>GDP (millions of current US$)</th>
<th>GDP (millions of constant 1990 US$)</th>
<th>GDP per capita (current US$/capita)</th>
<th>GDP by sector (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>236,995</td>
<td>540,000</td>
<td>631,000</td>
<td>772,928</td>
</tr>
<tr>
<td></td>
<td>180,849</td>
<td>409,657</td>
<td>476,084</td>
<td>575,721</td>
</tr>
<tr>
<td></td>
<td>2,548</td>
<td>4,538</td>
<td>4,352</td>
<td>4,861</td>
</tr>
<tr>
<td>Agriculture</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Industry</td>
<td>38</td>
<td>44</td>
<td>39</td>
<td>35</td>
</tr>
<tr>
<td>Services</td>
<td>49</td>
<td>45</td>
<td>53</td>
<td>57</td>
</tr>
</tbody>
</table>

Source: IAEA Energy and Economic Data Base; Country Information (Brazilian Energy Balance 1999); Data & Statistics/The World Bank).

1.3. Energy Situation

Brazil has modest fossil energy resource and one of the largest hydroelectric potential in the world (Table 3). However, most of this potential has not yet been tapped. The hydro resources located in the north-east, south-east and south of the country have already been thoroughly surveyed. The hydroelectric potential of north and central west regions, which cover practically Brazil’s Amazon area, is beginning to be tapped to partially meet both regional and national electric needs.

TABLE 3. ESTIMATED ENERGY RESERVES

<table>
<thead>
<tr>
<th>Solid</th>
<th>Liquid</th>
<th>Gas</th>
<th>Uranium (1)</th>
<th>Hydro (2)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exajoule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total amount in place</td>
<td>197.18</td>
<td>46.66</td>
<td>8.74</td>
<td>88.45</td>
<td>291.13</td>
</tr>
</tbody>
</table>

(1) This total represents essentially recoverable reserves.
(2) For comparison purposes a rough attempt is made to convert hydro capacity to energy by multiplying the gross theoretical annual capability (World Energy Council - 1998) by a factor of 10.

Source: IAEA Energy and Economic Data Base.

Historically, the expansion of the energy sector represented a dynamic aspect on the process of industrialization and modernization of economic and social structures in Brazil. This expansion has provided the energy needed for this process and has stimulated the development of productive sectors. During the last decades, Brazilian development was mainly induced by the State’s direct action. The two large centralized energy systems, electricity and petroleum (state-owned) were consolidated. The consolidation bolstered the development of the country’s main industries and engineering service infrastructure. Table 4 shows the historical energy statistics.

Since the 1940’s, anhydrous alcohol extracted from the sugar cane has been added to gasoline, at first only in small quantities. During the first oil crisis in 1973, the percentage of anhydrous alcohol was increased, reaching approximately 14% in 1992. In order to carry out a National Alcohol Programme (1975), Brazil developed a technology for direct use of hydrous alcohol (containing about 4% water) in automobile engines. Since 1977, alcohol production and consumption have been rising rapidly. In 1991, about 43 per cent of the Brazilian cars were alcohol fuelled.
During the 1960’s and 1970’s the total energy production experienced a high average annual growth rate of 12%; however, during the 1980’s and early 1990’s energy production growth rate decreased considerably (3.3% per year). Primary electricity production had also a similar pattern; the annual growth rate decreased from 10% from 1960 to 1980 to about 3% during 1980 to 2000.

Final energy consumption in Brazil reached 9.6 exajoules in 2000, a nearly eleven-fold increase from the 1960 figure of 0.78 Exajoule. The share of liquid fuels in primary energy consumption decreased from 69% in the 1960’s to 42% in 1998. Solid fuels, primary electricity (hydro and nuclear) and gas provided 17%, 37% and 3%, respectively, of primary energy consumption in 2000.

TABLE 4. BASIC ENERGY SITUATION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total(1)</td>
<td>0.78 2.88 5.51 6.89 9.29 9.61 10.28 2.82</td>
<td></td>
</tr>
<tr>
<td>Solids(2)</td>
<td>0.05 1.40 1.89 1.69 1.61 1.67 19.36 -0.61</td>
<td></td>
</tr>
<tr>
<td>Liquids</td>
<td>0.54 1.09 2.34 2.80 4.02 4.08 7.56 2.83</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td>0.04 0.15 0.27 0.30 0.30 0.15 15.03 10.82</td>
<td></td>
</tr>
<tr>
<td>Primary electricity(3)</td>
<td>0.18 0.38 1.24 2.25 3.38 3.56 10.22 5.41</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total(1)</td>
<td>0.37 2.09 3.56 5.27 7.13 7.57 12.02 3.84</td>
<td></td>
</tr>
<tr>
<td>Solids(2)</td>
<td>0.03 1.35 1.78 1.38 1.10 1.08 23.35 -2.47</td>
<td></td>
</tr>
<tr>
<td>Liquids</td>
<td>0.16 0.36 0.51 1.72 2.78 3.06 5.86 9.41</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td>0.04 0.15 0.27 0.30 0.30 0.15 15.03 10.82</td>
<td></td>
</tr>
<tr>
<td>Primary electricity(3)</td>
<td>0.18 0.38 1.24 2.01 2.98 3.14 10.23 4.74</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net import (import - export)</th>
<th>1960 to 1980</th>
<th>1980 to 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total(4)</td>
<td>0.41 0.84 1.95 1.50 2.01 2.03 8.06 0.22</td>
<td></td>
</tr>
<tr>
<td>Solids</td>
<td>0.03 0.05 0.13 0.31 0.44 0.46 7.86 6.58</td>
<td></td>
</tr>
<tr>
<td>Liquids</td>
<td>0.39 0.78 1.82 1.19 1.57 1.58 8.07 -0.71</td>
<td></td>
</tr>
<tr>
<td>Gases</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) Energy consumption = Primary energy consumption + Net import (Import - Export) of secondary energy.
(2) Solid fuels include coal, lignite and commercial wood.
(3) Primary electricity = Hydro + Geothermal + Nuclear + Wind.
(4) Electricity losses are not deducted.

Source: IAEA Energy and Economic Database.

1.4. Energy Policy

In the last few years, a price and tariff policy not consistent with production costs and an inadequate return on investments led to higher energy costs and decreased reliability of supply. The effects were exacerbated by construction delays and rising construction costs in the 1980’s. The Brazilian power sector is facing deep changes during the last four years evolving two different fronts: (i) the privatization of state owned electric companies (nuclear power generation is excluded); and (ii) the restructuring of electric sector as a whole (deregulation).

These changes have been designed to stabilize the currency, open markets to competition and reduce national indebtedness. The government has also decided to focus the role of the state on policy-making and regulation than as owner of economic agents, through the national privatization program (PND).

The main objectives of the national energy policy are orientated to: (i) conservation and efficient use of energy, (ii) expansion of oil production and electric power supply, (iii) realistic pricing policy, (iv) efficiency of energy production systems, (v) private enterprise participation, (vi) use of renewable energy resources; and (vii) technical innovation.
2. ELECTRICITY SECTOR

2.1. Structure of the Electricity Sector

Up until early 1960’s, the Brazilian electric utilities had no central co-ordination. Operation and planning activities were limited to independent utility requirements, resulting in isolated or poorly integrated systems. Rapid growth in industrialization created expansion of inter-regional integration opportunities for the electric companies outside their geographical areas. This integration gave rise to increased supply reliability and provided economies of scale.

In 1962, the federal government established a holding company, ELETROBRÁS, with the objective of organizing, co-ordinating and planning all activities of the sector at the national level. ELETROBRÁS is attached to the Ministry of Mines and Energy. ELETROBRÁS is an open corporation with shares negotiated in the capital market. It co-ordinates the whole electricity sector concerning the technical, financial and administrative aspects. ELETROBRÁS is the major shareholder of the federal companies and is a minor shareholder in the state-owned companies. ELETROBRÁS is also the main shareholder of ELETRONUCLEAR, the nuclear utility of Brazil.

A large utility company, Itaipu Binacional, was founded in 1973 by Brazil and Paraguay to manage the Itaipu hydropower plant of 12,600 MW capacity located at the border of both countries. Due to the difference in the frequencies used in both countries, the energy share sent to Brazil has to be transformed in direct current, transmitted to a conversion centre and then reconverted to alternate current in 60 Hz. According to the treaty that gave rise to Itaipu Binational, Brazil has to buy the excess energy produced and not consumed by Paraguay (27,560 GW·h in 1993).

Electricity generation and transmission are run by ELETROBRÁS subsidiaries, which are being privatized and some of the state-owned utilities within the geographical limits of the states. The states have a mix of state and privately owned companies for the distribution of electricity. The exception is the state of Tocantins, recently founded, where electricity is supplied by a private utility. The national electrical transmission grid has 61,539 km of 230 kV lines and 91,000 km of lines lower than 230 and higher than 34 kV.

As of December 1996, the Brazilian electricity sector comprises 62 organizations: four companies of the ELETROBRÁS System (ELETRONORTE, CHESF, FURNAS and ELETROSUL), 27 state utilities associated to ELETROBRÁS and 31 public and private utilities (see Table 5). The federal government is responsible for electricity generation in the north and northeast regions through two federal monopolies: ELETRONORTE and CHESF. In the remaining regions, the ELETROBRÁS System competes in the generation activities with state-owned utilities.

The current government programme for privatisation of the power sector is leading ELETROBRÁS to divest itself of its utilities with the exemption of ELETRONUCLEAR as, by the Brazilian Constitution, nuclear power activities should belong to the state. During the privatization process, there were 35 state & municipal distribution companies/utilities responsible for distribution under public service concessions, covering all 26 states and the Federal District of the country. Almost all used to be state-owned companies but now according to the new process 80% of them have been privatized and others are in preparation to be sold. Four vertically integrated state-owned utilities are responsible for 30% of the available energy. Four regional generation/transmission subsidiaries of ELETROBRÁS account for 38% of the available energy. The most important of these state-owned companies are Companhia Energética de Minas Gerais (CEMIG) in the Minas Gerais State; Companhia Energética de São Paulo (CESP) in São Paulo; Companhia Paranaense de Eletricidade (COPEL) in Paraná and Companhia Estadual de Energia Elétrica (CEE) in Rio Grande do Sul.
Following an auction in 1999, the control of the generating company Centrais Elétricas Geradoras do Sul S.A.(Gerasul) was sold for an amount of US$ 800 million in cash. In February 1999, shares of Eletricidade e Serviços S.A. (Elektro) were offered to the public. This company resulted from the separation of the distribution part of CESP. Enron International, the controlling stockholder in Elektro, purchased the shares for about US$ 216 million, a premium of 98.9% over the minimum set auction price. Controlling stakes in the generation companies, resulting from the separation of Companhia Energética de São Paulo (CESP), Paranapanema and Tietê, were also sold.

In 1999, the U.S. Duke Energy Corporation acquired the company Cia. de Geração de Energia Elétrica Paranapanema for the sum of R$ 1.239, a premium of 90.2% over the minimum auction price. In the same year, the U.S. company AES (Applied Energy Services, Inc.) acquired the company Cia. de Geração de Energia Elétrica Tietê for R$ 938.6 million, a premium of 30% over the minimum set auction price.

The Power National Operator (ONS) is a private company of utilities, transmission and distribution companies, importers and exporters of power, and power consumers, responsible for the co-ordination and operation control of generating and transmission facilities using the interconnected grid. The Ministry of Mines and Energy participates in NOS and has veto power in matters conflicting with national policy.

<table>
<thead>
<tr>
<th>COMPANY TYPE</th>
<th>PARTICIPATION (%)</th>
<th>PARTICIPATION (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELETROBRÁS system</td>
<td>40.0</td>
<td>38.0</td>
</tr>
<tr>
<td>State-owned Utilities</td>
<td>36.0</td>
<td>34.0</td>
</tr>
<tr>
<td>ITAIPU - Brazil’s share</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>ITAIPU - Brazil’s import</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Auto-Producers</td>
<td>4.7</td>
<td>5.7</td>
</tr>
<tr>
<td>Private/Municipal</td>
<td>0.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Source: ELETROBRÁS - 1998

2.2. Decision Making Process

The institutional organization of the Brazilian electricity sector includes the Ministry of Mining and Energy (MME) as the highest political instance, the National Electric Power Agency (ANEEL), created in 1996 replacing the Department of Water and Electrical Energy (DNAEE) as a normative body, and ELETROBRÁS as a planning and system expansion co-ordinator. Policy and decision making tasks are accomplished by ELETROBRÁS mainly through three committees: GCOI - Network Operation Co-ordination Group, GCPS - Electrical Systems’ Planning Co-ordination Group, and SINTREL - National Electric Energy Transmission System.

GCOI, created in 1969, is a co-ordinating group formed by ELETROBRÁS and the utilities, that optimizes the operation of the hydrothermal system by using to a maximum extent water resources and providing for fossil and nuclear fuel economy.

GCPS, created in 1992, is a committee in which the utilities are integrated, under the co-ordination of ELETROBRÁS. GCPS develops and updates the system’s ten-year expansion plan. This Decennial Plan is the main instrument used by the Ministry of Mining and Energy for planning the expansion of the electric sector.

SINTREL was created in 1993, as a result of deregulation, for improving competitiveness and increasing the participation of private capital in the sector. The utilities are in charge of the expansion, operation and maintenance of the SINTREL’s network.
In order to adapt the Government structure to the new market trends of deregulation, competitiveness and privatization, the National Electric System Operator (ONS), was created in December 1997. It has the responsibility to operate, control and coordinate the electric energy generation and transmission in the interconnected systems, assuring to the agents of the area a free access to the transmission network and an equanimous treatment, through the use of impartial, predictable and transparency operational rules.

2.3. Main Indicators

Brazil’s electricity output in 2000 amounted to 357 TW·h, of which 89.4% originated from hydroelectric sources, 8.9% from fossil fuelled plants, and 1.7% from nuclear plants (Table 6). In 2000, the electricity/energy production rate was about 45%. Per capita electricity consumption increased from 1,653 kW·h in 1990 to 2,268 kW·h in 1999 (Table 7).

TABLE 6. ELECTRICITY PRODUCTION AND INSTALLED CAPACITY

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity production (TW·h)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Total 1)</td>
<td>22.87</td>
<td>45.46</td>
<td>139.49</td>
<td>222.82</td>
<td>339.13</td>
<td>357.19</td>
<td>9.46</td>
<td>4.81</td>
</tr>
<tr>
<td>- Thermal</td>
<td>4.48</td>
<td>5.60</td>
<td>10.58</td>
<td>14.06</td>
<td>30.16</td>
<td>31.85</td>
<td>4.39</td>
<td>5.67</td>
</tr>
<tr>
<td>- Hydro</td>
<td>18.38</td>
<td>39.86</td>
<td>128.91</td>
<td>206.71</td>
<td>304.99</td>
<td>319.30</td>
<td>10.23</td>
<td>4.64</td>
</tr>
<tr>
<td>- Nuclear</td>
<td>2.06</td>
<td>3.98</td>
<td>6.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity of electrical plants (GW(e))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Total</td>
<td>4.80</td>
<td>11.23</td>
<td>33.37</td>
<td>53.05</td>
<td>67.26</td>
<td>70.72</td>
<td>10.18</td>
<td>3.83</td>
</tr>
<tr>
<td>- Thermal</td>
<td>1.16</td>
<td>2.41</td>
<td>5.87</td>
<td>6.87</td>
<td>8.02</td>
<td>8.27</td>
<td>8.45</td>
<td>1.73</td>
</tr>
<tr>
<td>- Hydro</td>
<td>3.64</td>
<td>8.83</td>
<td>27.50</td>
<td>45.56</td>
<td>58.61</td>
<td>60.59</td>
<td>10.64</td>
<td>4.03</td>
</tr>
<tr>
<td>- Nuclear</td>
<td></td>
<td></td>
<td></td>
<td>0.63</td>
<td>0.63</td>
<td>1.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Byproducers</td>
<td></td>
<td>0.59</td>
<td>2.33</td>
<td>2.66</td>
<td>2.99</td>
<td>-</td>
<td>-</td>
<td>1.4</td>
</tr>
</tbody>
</table>

1) Electricity losses are not deducted.
Source: IAEA Energy and Economic Database.

TABLE 7. ENERGY RELATED RATIOS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy consumption per capita (GJ/capita)</td>
<td>11</td>
<td>30</td>
<td>45</td>
<td>47</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>Electricity per capita (kWh/capita)</td>
<td>314</td>
<td>458</td>
<td>1,125</td>
<td>1,653</td>
<td>2,254</td>
<td>2,344</td>
</tr>
<tr>
<td>Electricity production/Energy production (%)</td>
<td>60</td>
<td>20</td>
<td>37</td>
<td>40</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>Nuclear/Total electricity (%)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ratio of external dependency (%)1)</td>
<td>53</td>
<td>29</td>
<td>35</td>
<td>22</td>
<td>22</td>
<td>21</td>
</tr>
<tr>
<td>Load factor of electricity plants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Total (%)</td>
<td>54</td>
<td>46</td>
<td>48</td>
<td>48</td>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>- Thermal</td>
<td>44</td>
<td>27</td>
<td>21</td>
<td>23</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>- Hydro</td>
<td>58</td>
<td>52</td>
<td>54</td>
<td>52</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>- Nuclear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Net import / Total energy consumption
Source: IAEA Energy and Economic Database.

2.4 Impact of Open Electricity Market in the Nuclear Sector

The Brazilian electric sector is facing a restructuring that comprises the following institutional aspects (i) the creation of the Wholesale Energy Market (WEM), with the definition of new agents, their relationships, commercialization rules at the supply level and measures to ensure competition to be followed by companies operating in more than one of these segments: generation, transmission, commercialization and distribution. All generators with installed capacity above 50 MW and all
distribution/ retailers with annual sales in excess of 100 GW·h would be required to join the WEM. Free consumers would be entitled to join. Large consumers over 10 MW are free to choose their suppliers; (ii) implementation of the open access to the transmission and distribution networks including of non captive consumers to their suppliers and the remaining systems agents; (iii) the implementation of a new regulatory agency – National Electric Energy Agency (ANEEL); (iv) the creation of the National Electric System Operator (ONS), and the definition of responsibilities in regard to generation supply and basic transmission networks; and (v) the restructuring of ELETROBRÁS Post-privatization, ELETROBRÁS will retain a minority interest in the privatized companies, its 50% in Itaipu and ownership of the nuclear power plants.

The central feature of the new trading market model was the creation of the independent system operator (ISO), an independent company responsible for the operational planning, scheduling, dispatch and market price calculation. The trading market model was implemented in 2000, when the functions of GCOI and CCON were transferred to ISO and the WEM was established.

At the beginning the relationship between generators and consumers/distributors will be mostly controlled by bilateral contracts, 90% of the whole market, and just 10% will be sold on free conditions, due to institutional restrictions. Nuclear is included at this form of contract at the same way of Itaipu. From 2003 on, energy will be free to be trade in a competitive market, without tariffs regulation. ELETROBRÁS will commercialize the energy from Itaipu and Eletronuclear.

Now the challenge of nuclear energy in Brazil is to compete in the new market, in which tariffs of the four federal suppliers companies in 2000 stay in the range of about 18.7 US$/MW·h for the generation services. The actual generation costs of hydro plants are currently about 15.3 US$/MW·h and nuclear 26.38 US$/MW·h. It is a question of competitiveness. In the long term, nuclear energy will be necessary in the Brazilian energy mix. It is not known, how long this period will be and whether Brazil will be able to implement the nuclear power programme in the future to survive.

3. NUCLEAR POWER SITUATION

3.1. Historical Development

In 1970, a decision was made to build Brazil’s first nuclear power station through an international bid. The contract of a turn-key project for a 626 MW(e) PWR reactor (ANGRA 1) was awarded to Westinghouse Electric Corporation of the United States of America. ANGRA 1 construction started in 1971, and the first criticality was achieved ten years later.

In 1975, in an effort to become self-sufficient in nuclear power generation, Brazil signed an agreement with the Federal Republic of Germany to build eight 1,300 MW(e) reactors (PWR Biblis B type) over the period of 15 years. Under this agreement, two of these units (ANGRA 2 and ANGRA 3) were scheduled for construction on the following year with most of their components imported from Kraftwerk Union’s (KWU) shops in Germany. According to this agreement, the rest of the plants were to contain 90% Brazilian-made components. The Brazil-Germany agreement created the Empresas Nucleares Brasileiras (NUCLEBRAS) and a Brazilian stated-owned nuclear holding company. Additionally, several subsidiaries (joint companies) were established to achieve nuclear technology transfer from Germany (see Table 8).

The Brazilian nuclear regulatory body is the National Nuclear Energy Commission (CNEN), responsible for conducting the national research programme; licensing nuclear power plants and nuclear facilities; performing regulatory activities; and training and organizing personnel, according to the Law 4,118 of 1962. In the early 1980’s, the Brazilian Navy started a nuclear propulsion programme. Backed by CNEN, the Navy’s main activity was the development of uranium enrichment by using ultracentrifuge process. Relatively good success was achieved by the end of the decade, which has continued through the 1990’s.
Due to several factors (especially financial problems) the Brazilian-German technology transfer programme was forestalled. ANGRA 2 and ANGRA 3 construction was interrupted several times, resulting in further delay in Brazilian nuclear programme. Due to Brazil’s foreign debt and high inflation with added pressures from privatization programme and budget cuts, the Brazilian nuclear programme was reorganized at the end of the 1980’s.

In 1988, a new company, Indústrias Nucleares Brasileiras SA (INB) replaced NUCLEBRAS and its subsidiaries, with limited authority. INB became responsible for rare earth’s, mining of nuclear minerals and yellow cake and nuclear fuel production assuming FEC, NUCLEMON and CIPC activities. FEC, renamed as Nuclear Complex of Rezende, was transformed in an INB Directorate. Both INB and NUCLEP, responsible for heavy equipment fabrication, became CNEN’s subsidiaries. Responsibility for the construction of nuclear power stations was transferred to the state-owned utility, FURNAS/ELETROBRÁS, incorporating NUCON activities. NUCLEN was maintained responsible for nuclear power plant architect and engineering.

In 1997, the architect engineering company Nuclen, merged with the nuclear directorate of Furnas, an utility responsible for the bulk supply of electricity of the most developed region of Brazil. (included in the privatization programme) The new company named Eletronuclear - ELETROBRÁS TermoNuclear S/A. is responsible for design, procurement & follow up of Brazilian and foreign equipment’s, management of construction, erection and commissioning of nuclear power plants and is the sole owner and operator of nuclear power plants in the country. Siemens sold its 25% holding in Nuclen to ELETROBRÁS when Eletronuclear was formed. NUCLEI and NUCLAM were disbanded.

3.2. Current Policy Issues

Hydroelectric power plays a paramount role in the Brazilian electricity system while thermal power plants (conventional and nuclear) are meagre contributors to electricity supply. Considering the country’s huge hydroelectric potential along with social and economical uncertainties, it is very difficult to forecast further nuclear power development in Brazil. However, according to the “Plan 2015” (i.e. ELETROBRÁS’ National Plan for Electrical Sector Expansion to 2015), an additional nuclear capacity of 1,300 MW(e) was planned for 2001 (commissioning of Angra 2). The construction of the ANGRA 3 power station is being studied.

3.3. Status and Trends of Nuclear Power

The status of the Brazilian NPP is shown in Table 9. The ANGRA 1 nuclear power plant located between Sao Paulo and Rio de Janeiro, has a net capacity of 626 MW(e). It started commercial operation in December 1984. During the period of 1985-1989, the plant experienced two long unscheduled outages due to problems on the main condenser and emergency diesel electric generator. From 1990 on, the plant operated with a limited capacity factor of 55% due to preference given to hydroelectric generation. Nevertheless, ANGRA 1 has operated at full capacity, in several occasions, when it was necessary. In March 1993, the plant experienced problems with some fuel rods. It resumed energy production in December 1994. ANGRA 1 plays an important role in the

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>ACTIVITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUCLEP*</td>
<td>Heavy Components Manufacture</td>
</tr>
<tr>
<td>NUCLEI*</td>
<td>Enrichment by Jet-Nozzle Process</td>
</tr>
<tr>
<td>NUCLEN*</td>
<td>Nuclear Power Plant Architect and Engineering</td>
</tr>
<tr>
<td>NUCLAM*</td>
<td>Uranium Prospection</td>
</tr>
<tr>
<td>FEC</td>
<td>Fuel Elements Manufacture</td>
</tr>
<tr>
<td>CDTN</td>
<td>Nuclear Technology R&D Centre</td>
</tr>
<tr>
<td>NUCON</td>
<td>Nuclear Power Plant Construction</td>
</tr>
<tr>
<td>NUCLEMON</td>
<td>Rare Earth's Production</td>
</tr>
<tr>
<td>CIPC</td>
<td>Mining and Yellow Cake Production</td>
</tr>
</tbody>
</table>

*Joint Brazilian-German Companies
reliability of the southeast electric system (predominantly of hydro origin) assuring continuous electric power supply to the states of Rio de Janeiro and Espírito Santo where local water resources are virtually exhausted and power supply depends on long transmission lines. The operating experience is given in Table 10.

TABLE 9. STATUS OF NUCLEAR POWER PLANTS

<table>
<thead>
<tr>
<th>Station</th>
<th>Type</th>
<th>Capacity</th>
<th>Operator</th>
<th>Status</th>
<th>Reactor Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANGRA-1</td>
<td>PWR</td>
<td>626 ELETRONU</td>
<td>Operational</td>
<td></td>
<td>WEST</td>
</tr>
<tr>
<td>ANGRA-2</td>
<td>PWR</td>
<td>1300 ELETRONU</td>
<td>Operational</td>
<td></td>
<td>KWU</td>
</tr>
<tr>
<td>ANGRA-3</td>
<td>PWR</td>
<td>1245 ELETRONU</td>
<td>Suspended</td>
<td></td>
<td>KWU</td>
</tr>
</tbody>
</table>

Source: IAEA Power Reactor Information System

TABLE 10. OPERATING EXPERIENCE OF ANGRA 1

<table>
<thead>
<tr>
<th>Year</th>
<th>Energy (GW-h)</th>
<th>Average Load Factor (%)</th>
<th>Year</th>
<th>Energy (GW-h)</th>
<th>Average Load Factor (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>51.7</td>
<td>0.9</td>
<td>1991</td>
<td>1306.4</td>
<td>23.8</td>
</tr>
<tr>
<td>1983</td>
<td>162.5</td>
<td>3.0</td>
<td>1992</td>
<td>1506.4</td>
<td>27.4</td>
</tr>
<tr>
<td>1984</td>
<td>1545.5</td>
<td>28.1</td>
<td>1993</td>
<td>402.7</td>
<td>7.3</td>
</tr>
<tr>
<td>1985</td>
<td>3169.4</td>
<td>57.8</td>
<td>1994</td>
<td>41.1</td>
<td>0.8</td>
</tr>
<tr>
<td>1986</td>
<td>132.4</td>
<td>2.4</td>
<td>1995</td>
<td>2333.6</td>
<td>42.6</td>
</tr>
<tr>
<td>1987</td>
<td>910.6</td>
<td>16.6</td>
<td>1996</td>
<td>2288.8</td>
<td>41.6</td>
</tr>
<tr>
<td>1988</td>
<td>566.6</td>
<td>10.3</td>
<td>1997</td>
<td>2990.0</td>
<td>54.5</td>
</tr>
<tr>
<td>1989</td>
<td>1695.1</td>
<td>30.9</td>
<td>1998</td>
<td>3093.8</td>
<td>56.4</td>
</tr>
<tr>
<td>1990</td>
<td>2055.3</td>
<td>37.5</td>
<td>1999</td>
<td>3631.7</td>
<td>66.2</td>
</tr>
</tbody>
</table>

Source: IAEA Power Reactor Information System

Construction of ANGRA 2 began in January 1976, but due to financial problems the construction of the unit has slowed down and was several times halted. The economic recovery of the second half of the 90's led to the acceleration of the unit’s construction. On 21 July 2000, at 10:16 pm, ANGRA 2 was synchronized for the first time to the Brazilian interconnected electrical grid.

The reactor became critical on 14 July at 11:50 pm, after being licensed for this procedure on the previous day by the Brazilian nuclear regulatory authority, CNEN (Comissão Nacional de Energia Nuclear). Angra 2 trial operation (a test phase of continuous operation at a 100% power level) was successfully completed on 21 December 2000 and, since then, the plant has been operating above 90% of its nominal capacity of 1309 MW.

The third nuclear station (ANGRA 3), a 1,245 MW(e) PWR reactor and similar to ANGRA 2, was initiated in 1983. ANGRA 3 has about 59 per cent of the design and engineering work completed. The civil works and electro-mechanical assemblies’ activities were postponed. ELETRONUCLEAR is developing technical and economical feasibility studies for ANGRA 3 in order to submit them to the electric sector authorities.

3.4. Organisational Chart
The organizational structure of Brazil’s nuclear sector and the relationships among different organizations are shown in Figure 1. The National Nuclear Energy Commission (CNEN), is the regulatory body, which reports to the Ministry of Science and Technology (MCT). The Brazilian Electricity Company (ELETROBRÁS), responsible for planning and co-ordinating all activities of the electrical sector at national level, is under the Ministry of Mining and Energy. The remaining organizations are discussed in the following sections.

FIG. 1. Organization Structure for Nuclear Energy Development in Brazil

4. NUCLEAR POWER INDUSTRY

4.1. Supply of Nuclear Power Plants

Two companies related to nuclear power plant engineering and component supply are active at the nuclear sector: NUCLEP (Nuclear Heavy Equipment) as a subsidiary of CNEN and ELETRONUCLEAR - ELETROBRÁS Termoenergética S/A.

NUCLEP was established to design and fabricate heavy nuclear power plant components, especially those used in the reactor primary circuit. NUCLEP specialises in fabrication of large components made from alloy steels, nickel alloys and titanium alloys. It maintains modern quality control laboratories, outfitted with precision instruments, qualified and certified according to international standards, for mechanical, chemical and metallurgical testing.

ELETRONUCLEAR is responsible for design, procurement & follow up of Brazilian and foreign equipment, management of construction, erection and commissioning of nuclear power plants and is the sole owner and operator of nuclear power plants in the country.

4.2. Operation of Nuclear Power Plants

ELETRONUCLEAR is the only utility responsible for construction and operation of Brazilian nuclear power plants ANGRA 1 and 2. The ANGRA site has a PWR/ANGRA 2 type simulator in operation since 1985. The simulator has provided operator-training services for utilities from countries such as Spain, Switzerland, Germany and Argentina, which operate nuclear power plants supplied by KWU.
4.3. Fuel Cycle and Waste Management Service Supply

Industrias Nucleares do Brasil - INB, CNEN’s subsidiary, is responsible for the industrial nuclear fuel cycle activities in Brazil, from mining and uranium concentrate production to fuel elements fabrication. Since 1992, a uranium mine located in Poços (Figure 2) de Caldas has been operated with a nominal production capacity of 400 tons U₃O₈, but in 1997 the mine was shutdown because the high-grade ore became exhausted, and now the mine is under decommissioning. Additional uranium deposits in Caetité, State of Bahia, and Itataia, State of Ceará have been prospected. The Caetité deposit has reserves of 83000 tons U₃O₈ and a planned capacity production of 400 tons U₃O₈ per year in 2002. The mine started operation in May 1999 with a production of 10 tons/y and is planned 150 tons/y in the second semester. The Itataia deposit has 142,000t of uranium reserves (inferred) associated with phosphates and a schedule production of 700t/year.

![FIG. 2. Brazilian Nuclear Installations](image)

The Fuel Fabrication Plant (FEC) is located at Resende, State of Rio de Janeiro, with two units, and has a production capacity of 280 tons of uranium per year. At present, FEC was refurbished and produces at the unit I the fuel rods and fuel elements for Brazilian nuclear reactors. The Unit II, responsible for pellets fabrication, is operating since June 1999 with a capacity of 120 tons of UO₂ pellets /year. The UO₂ powder production line, using the AUC process, and pellets fabrication are in operation since September 1999, with an overall capacity production of 140 tons uranium per year, at Unit II. The Fuel Fabrication Plant also produces other fuel element components, such as top and bottom nozzles, spacer grids, and end plugs. INB also has a demonstration plant operating to produce rare earth oxides of very high purity (99.9%). It is capable of producing the complete spectrum of rare earth components, from chlorides, obtained from the monazite sands, to high purity oxides. These projects will be also developed jointly with private companies.
As part of its nuclear propulsion programme, the Brazilian Navy installed in Iperó (60 km from São Paulo), a demonstration enrichment centrifuge pilot plant.

The major sources of radioactive waste producers in Brazil are the two nuclear power plants and the Monazite processing industry. The waste generated by the uranium mining and milling industrial complex, although significant in volume, is kept at the site, in a dam specially built for this purpose. The waste management policy takes into account both the accumulated and projected waste generated by the above mentioned facilities and the existing 3,500 cubic meters of Caesium-137 waste produced as a result of the decontamination work performed in Goiânia, following the 1987 accident that involved a 1,375 Curie teletherapy source.

The National Nuclear Energy Commission, CNEN, is responsible for regulation and final disposition of radioactive waste. Political and psychosocial aspects related to the subject of radioactive waste disposal, specially the “not-in-my-back-yard syndrome”, contribute to the difficulties faced by the Brazilian Government when decisions concerning radioactive waste management are to be taken.

CNEN has the responsibility for the regulation and final disposal of radioactive waste. There are no plans for the management of high level wastes. The spent fuel from Angra 1 is currently stored in ponds on site. Wastes from CNEN, industrial and medical installations and wastes from the accident at Goiania are stored in a special repository at Abadia, Goias.

The waste generated by the uranium mining and milling industrial complex, located at the Poços de Caldas plateau in the Brazilian state of Minas Gerais, is kept in a 29.2 hectares dam system, specially built for this purpose with an actual volume of one million cubic metres. It is estimated that 4.8 Tbk (130 Ci) of U238 and 15 Tbk (405 Ci) of Ra226 have been deposited at this site. The chemical processing of monazite sands to extract rare earth elements, is a significant source of thorium, a nuclear material with no planned short-term application, and a complex compound of Ra228 with barium sulphate, called “mesothorium”, with no foreseeable use. There is, presently, about 300 metric tons of “mesothorium” with an estimated Ra228 activity of 1.85 Tbk (50 Ci) in a provisional storage facility waiting for final disposal. The material containing thorium hydroxide, separated from the rare earth elements during monazite processing, although not formally classified as waste, is also stored. It amounts, approximately, to 17,000 metric tons. Since the Brazilian authorities have not ruled out the reprocessing option, spent fuel is not classified as high-level radioactive waste.

Because the Brazilian reprocessing programme has not been clearly defined, the ANGRA 1 spent fuel is temporally stored on-site, in the reactor basin. As of December 1994, 67.5 metric tons of spent fuel (164 fuel elements) was stored in racks at the on-site reactor basin of ANGRA 1 nuclear power plant and 0.06 metric tons of spent fuel from one of the research reactors under storage conditions. The utility, FURNAS, is conducting studies related to the design of super compact racks with a planned capacity of 1,252 fuel assemblies to increase the storage capacity of the on-site reactor basin. Presently, there are no firm plans concerning the management of high-level nuclear waste.

4.4. Research and Development Activities

The National Nuclear Energy Commission (CNEN), created in 1956, has a twofold mission: to regulate, license and inspect the peaceful use of nuclear energy and to promote, orient and co-ordinate research and development in all areas related to nuclear energy. CNEN comprises three directorates whose responsibilities are:

i) Directorate of Administration and Infrastructure (DAL): human resources, administration and information management, financial reporting and control;
ii) Directorate of Research and Development (DPD): fuel cycle and materials, reactor technology, radiation utilization, radioisotopes application and production, instrumentation and control, safety, nuclear physics and chemistry, etc.;

iii) Directorate of Radiation Protection and Safety (DRS): Radiation protection, safety, control and licensing of nuclear power plants and other nuclear installations.

During the last decades, four large research nuclear centres were established for carrying out R&D in nuclear sciences and engineering. Research reactors, accelerators and various R&D laboratories, including pilot plant facilities, were progressively set up in these centres. These four research centres are:

IPEN (São Paulo) - Institute for Energy and Nuclear Research
- Research Reactors: 2 (one 5 MW/pool type and one zero power reactor/tank type)
- Cyclotron
- Radioisotopes Production \(^{99m}\text{Tc};^{131}\text{I};^{121}\text{I}; etc.)
- Research on fuel cycle and materials; reactor technology; safety; fundamentals; radiation and radioisotope applications; etc.

IEN (Rio de Janeiro) - Institute for Nuclear Engineering
- Research Reactor: 1 (100 kW, ARGONAUTA)
- Cyclotron
- Research on fast reactor; instrumentation and control; fundamentals.

CDTN (Belo Horizonte) - Centre for Nuclear Technology Development
- Research Reactor: 1 (250 kW, TRIGA)
- Research on mining; reactor technology; materials, safety; chemistry; environment technology.

IRD (Rio de Janeiro) - Institute for Radiation Protection and Dosimetry
- Research on radiation protection and safety; environmental technology.

Within CNEN organizational chart IPEN, IEN and CDTN institutes report to the Directorate of Research and Development while IRD institute reports to the Directorate of Radiation Protection and Safety.

4.5. International Co-operation in the Field of Nuclear Power Development and Implementation

The agreement signed with the Federal Republic of Germany in 1975 included clauses for technology and know-how transfer in all areas of the nuclear technology, including enrichment process, called “jet-nozzle”, then in a development stage. The agreement included training of Brazilian personnel in German industries, laboratories and universities.

Under the sponsorship of International Atomic Energy Agency, Brazil has been participating in many technical assistance programs, advisory groups and symposium meetings. Brazil has technical co-operation agreements with other countries, like the United States of America, France, Argentina and China in exchange of information on nuclear safety and radiological protection, computer codes development and assessment, training, radioactive waste management and radioactive materials transportation.

5. REGULATORY FRAMEWORK

5.1. Safety Authority and the Licensing Process
The governmental organization responsible for the licensing of nuclear power plants (NPPs) and other nuclear installations in Brazil is the National Nuclear Energy Commission (CNEN). In August 1962, with the enactment of law No. 4,118, a National Policy on Nuclear Energy was established with the Government monopoly of nuclear materials and minerals.

The process involves the issuance of five licenses or authorizations as listed below:

In the early 1970's, due to the needs of the Brazilian Nuclear Power Programme, three experimental standards were issued by CNEN on Site Selection, Licensing Process and Radiological Protection, the Resolução CNEN 09/72, CNEN 06/72 and CNEN 06/73. An extensive set of rules and standards, as listed under section 5.2, regulate the nuclear activities in Brazil. CNEN licenses nuclear installations. The process involves the issuance of five licenses or authorizations as listed below:

- Site Approval;
- Construction Permit;
- Nuclear Material Utilization Authorization;
- Initial Operation Authorization; and,
- Permanent Operation Authorization.

Standard CNEN-NE-1.04 establishes the requirements for the licensing process. The Initial Operation Authorization is issued with some temporary conditions and the Permanent Operation Authorization (POA) is limited to 40 years. A Periodic Safety Reassessment is conducted every ten years of operation, when the conditions of authorization can be modified or extended. In January 1999 a law establishing fees and taxes for license and operating authorization was approved by the National Congress and signed by the President of Brazil (Law 9,765/99). It establishes a fee of US$ 2,700,000.00 for an operating license and an annual fee of US$ 450,000.00 per operating unit. These fees will be directed to a special account to be used by CNEN in its activities, but not for salaries of the staff, which is provided by governmental funds.

In 1981, the Environmental Policy Law was promulgated and, from 1983 to 1989, CNEN was also responsible for conducting the environmental licensing of nuclear installations. In 1989, the Brazilian Institute of Environment (IBAMA) was created and designated to conduct the environmental licensing of all installations, including nuclear facilities.

During the operational phase of nuclear facilities periodic safety reports are required. Regulatory safety assessment is conducted by CNEN through the review of the licensee’s reports as well as through periodic inspections. On-site resident inspectors are assigned for permanent supervision of operational safety.

5.2. Main National Laws and Regulations

The National Congress approves the main legislation. CNEN’s regulations and standards are based on IAEA standards, commonly used by many nations. The main laws and standards used in Brazil are:

- Law No. 6,189: CNEN’s Set-up as Regulatory and Licensing Federal Authority, 1974.

CNEN’s main standards are:

• CNEN-NE.1.01: Licensing of Nuclear Reactors Operators, 1979.
• CNEN.NE.2.01: Physical Protection of Operational Units of Nuclear Installations, 1981.
• CNEN-NE.2.02: Nuclear Material Control and Safeguards, 1982.
• CNEN-NE.5.02: Transport Storage and Handling of Nuclear Fuels, 1989.

5.3. International, Multilateral and Bilateral Agreements

AGREEMENTS WITH THE IAEA

• IAEA Statute Signature: 26 October 1956
• Amendments to the Article VI and XIV of the IAEA Statute Not signed
• Agreement on privileges and immunities Entry into force: 13 June 1966
• Quadripartite safeguards agreement INFCIRC/435 Entry into force: 4 March 1994
• Additional protocol Not signed
• Safeguards agreement Brazil/Germany INFCIRC/237 Suspension signed: 16 October 1998
• Safeguards agreement Brazil/USA INFCIRC/110 Entry into force: 31 October 1968
• Amendment to the safeguards agreement Brazil/USA Signature: 27 July 1972
• Supplementary agreement on provision of technical assistance by the IAEA Entry into force: 27 February 1991
• ARCAL Entry into force: September 1984
• New ARCAL Agreement Signed: 4 August 1999

MAIN INTERNATIONAL TREATIES

• NPT Entry into force: 18 September 1998
• Tlatelolco Treaty Ratified 29 January 1968
 Amendment of the Treaty Ratified: 30 May 1994
• Convention on the physical Entry into force: 8 February 1987
protection of nuclear material

- Convention on early notification of a nuclear accident
 Entry into force: 4 January 1991

- Convention on assistance in the case of a nuclear accident or radiological emergency
 Entry into force: 4 January 1991

- Vienna convention on civil liability for nuclear damage
 Entry into force: 26 June 1993

- Paris convention on civil liability for nuclear damage
 Not applicable

- Joint Protocol
 Non-Party

- Protocol to amend the Vienna convention on civil liability for nuclear damage
 Not signed

- Convention on supplementary compensation for nuclear damage
 Not signed

- Convention nuclear safety
 Entry into force: 2 June 1997

- Joint convention on the safety of spent fuel management and on the safety of radioactive waste management.
 Signature: 31 October 1997

OTHER RELEVANT INTERNATIONAL TREATIES

- ZANGGER Committee
 Non-member

- Improved procedures for designation of safeguards inspectors
 Not accepted

- Nuclear suppliers group
 Member

- Nuclear export guidelines
 Not adopted

- Acceptance of NUSS Codes
 No replay

- Treaty for prohibition of experiences with nuclear weapons in the atmosphere, cosmic space and under water
 Signature: 5 August 1963

- Partial test ban treaty
 Entry into force: 15 December 1964

- ILO Convention
 Signature: 7 April 1964

- Technical assistance agreement between UN, its specialised agencies and the IAEA
 Signature: 29 December 1964
• Treaty on the prohibition of the installation of nuclear weapons and other lethal weapons in the seabed, deep ocean floor and sub-seabed.
 Signature: 3 September 1971
• Convention on civil liability in the field of maritime carriage of nuclear material
 Signature: 17 December 1971
• Convention on prevention of marine pollution by dumping of wastes and other materials
 Signature: 29 December 1972
• Convention on the control of movement of dangerous wastes and their deposits
 Signature: 16 June 1992

MULTILATERAL AGREEMENTS
• Antarctica Treaty
 Signature: 1 December 1959
• Treaty for prohibition of nuclear weapons in Latin America
 Signature: 9 May 1967

BILATERAL AGREEMENTS:
• Co-operation agreement concerning peaceful uses of nuclear energy Paraguay
 Signature: 18 August 1961
• Co-operation agreement concerning peaceful uses of nuclear energy Bolivia
 Signature: 11 January 1966
• Co-operation agreement in the field of peaceful uses of nuclear energy Ecuador
 Signature: 11 June 1970
• Agreement concerning nuclear ships in Brazilian waters Germany
 Signature: 7 June 1972
• Co-operation agreement concerning peaceful uses of nuclear energy Germany
 Signature: 27 June 1975
• Co-operation agreement concerning peaceful uses of nuclear energy between CNEN and the Nuclear Research Centre in Karlsruhe
 Germany
 Signature: 8 March 1978
• Special agreement between CNEN and the Research Centre in Jülich
 Germany
 Signature: 8 March 1978
• Assistance in establishing the conditions of the application of uranium hexafluoride France
 Signature: 6 January 1981
• Agreement for the co-operation on the peaceful uses of nuclear energy Colombia 12 March 1981

• Co-operation agreement concerning peaceful uses of nuclear energy Peru 26 June 1981

• Co-operation agreement in the field of peaceful uses of nuclear energy Italy 29 July 1981

• Memorandum of understanding Great Britain 2 December 1981

• Co-operation agreement in the field of peaceful uses of nuclear energy Spain 12 May 1983

• Co-operation agreement concerning peaceful uses of nuclear energy Venezuela 30 November 1983

• Technical co-operation agreement USA 6 February 1984

• Memorandum of understanding on co-operation in the field of peaceful uses of nuclear energy China 29 May 1984

• Co-operation agreement concerning peaceful uses of nuclear energy China 11 October 1984

• Agreement concerning early notification and mutual assistance in case of nuclear accident or radiological emergency Argentina 18 July 1986

• Agreement concerning peaceful uses of nuclear energy Argentina 18 July 1991

• Application of safeguards Argentina 13 December 1991

• Agreement on the privileges and immunities ABACC 27 March 1992

• Co-operation agreement in the field of peaceful uses of nuclear energy Russian Federation 15 September 1994

REFERENCES

Appendix

DIRECTORY OF THE MAIN ORGANIZATIONS, INSTITUTIONS AND COMPANIES INVOLVED IN NUCLEAR POWER RELATED ACTIVITIES

NATIONAL ATOMIC ENERGY AUTHORITY

National Nuclear Energy Commission
Rua General Severiano 90, BOTAFOGO
222290-900 - Rio de Janeiro-RJ, Brazil
Tel: (5521) 2756597
Fax: (5521) 5462316
http://www.cnen.gov.br/

NUCLEAR ENERGY COMMISSION INSTITUTES

Centro de Desenvolvimento de Tecnologia Nuclear (CDTN)
Prof. Mário Werneck, S/N°, Cidade Universitária
30161-970 - Belo Horizonte-MB, Brazil
Tel.: (5531) 499 3261
Fax: (5531) 499 3444
http://www.uranco.cdtm.br/

Instituto de Engenharia Nuclear, IEN
Cidade Universitaria Ilha do Fundão
21945-970 - Rio de Janeiro-RJ, Brazil
Tel.: (5521) 280 6830
Fax: (5521) 590 2692
http://www.ien.gov.br/

Instituto de Pesquisas Enérgéticas e Nucleares (IPEN)
Travessa “R”, 400
Cidade Universitaria
05508-900 - São Paulo – SP, Brazil
Tel.: (5511) 816 9000
Fax: (5511) 212 3546
http://www.ipen.gov.br/

Instituto de Radioproteção e Dosimetria, IRD
Av. Salvador Allende, S/N° Barra da Tijuca
22780-160 - Rio de Janeiro – RJ, Brazil
Tel.: (5521) 442 1927
Fax: (5521) 442 1950
http://www.ird.gov.br/

OTHER NUCLEAR ORGANIZATIONS

Indústrias Nucleares Brasileiras (INB)
R. Mena Barreto, 161
22271-100 - Rio de Janeiro-RJ, Brazil
Tel.: (5521) 552 1845
Fax: (5521) 286 8261
http://www.inb.gov.br/

Eletrobras Termo Nuclear S/A (ELETRONUCLEAR)
Rua da Candelária 65
20091-020 - Rio de Janeiro – RJ, Brazil
Tel.: (5521) 588 7000
Fax: (5521) 588 7200
http://www.eletronuclear.gov.br/

Nuclebrás Equipamentos Pesados S/A (NUCLEP)
Av. Gal, Euclides de Oliveira Figueiredo, 200, Itaguaí
23825-410 - Rio de Janeiro-RJ, Brazil
Tel.: (5521) 688 2056
Fax: (5521) 688 3011
http://www.nuclep.gov.br/

Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC)
http://www.abacc.org/

Nuclear Energy Association of Brazil (ABEN)
http://www.alternex.com.br/~aben/

Agriculture Nuclear Energy Center (CENA)
http://www.cena.usp.br/

Nuclear Fuel Generation
National Synchrotron Light Laboratory (LNLS)
http://www.lnls.br/