

Fast Reactor Fuel Development in Europe

J. Somers¹, E. D'Agata¹, J.M. Bonnerot², P. Anzieu2³, F. Klaassen³

Presented by D. Haas¹

¹ EC-JRC, ² CEA, ³ NRG

Foreword

Extended Fast Reactor fuel development in Europe Focus on Sodium Fast Reactors Main contributors: France, United Kingdom, Germany, Belgium, Netherlands, EC Reactors operated in France, United Kingdom, Germany Past research exclusively on Pu-bearing fuel with pin geometry Reference was oxide fuel (MOX) + R & D on nitrides, carbides Existing data base is huge and will not be reported here

This presentation concentrates on new designs, with minor actinides fuels

- EUROPEAN framework on MA fuel research
- Fuel and Cycle Options
- Achievements from the past and present
- Looking towards the Future

EUROPEAN Framework

FR09 Kyoto, Japan, December 2009

Fast Reactor Fuel Research in Europe: performed through

EURATOM Indirect Actions DG RTD

GCFR, GOFAST: GFR EISOFAR, ESFR: SFR ELSY, LEAD: LFR (reactor design only) EUROTRANS: transmutation fuels FAIRFUELS: cross-cutting fuel research GETMAT: cross-cutting materials research Carried out by European consortia

National Organisations

CEA, NRG, PSI, SCK/CEN...

EURATOM Direct Actions DG JRC

Institute for Transuranium Elements (Karlsruhe) Institute for Energy (Petten)

EUROPEAN Framework

Sustainable Nuclear Energy Technology Platform SNETP

SNETP Strategic Research Agenda SRA

- Fuel for fast reactors have many commonalities
- The SRA has defined 3 pillars for cross cutting fuel R&D:
 - Properties of Minor Actinide fuels
 - Multi-purpose irradiation experiments
 - Separate effects and modelling

EUROPEAN Framework

FR09 Kyoto, Japan, December 2009

Strategic Research Agenda : time frame for fast reactor fuel development

Fuel requirements are based on:

- Neutronics and core physics
 - Safe operation, breeding ratio
- Material properties
 - Fabrication feasibility
 - Margin to melt (T_f , λ , C_p)
 - Mechanical and chemical properties
 - Interaction with coolant
 - Interaction with cladding (chemical and mechanical)
- Irradiation Performance
 - High burnup
 - Swelling behaviour
 - Relocation/vaporisation behaviour
 - Fission Products
 - Reprocessability

Fuel and Cycle Options

FR09 Kyoto, Japan, December 2009

Candidate fuels for Fast Reactors

Fuel properties (U,Pu)

	<u>Metal</u>	<u>Oxide</u>	<u>Nitride</u>	<u>Carbide</u>
Heavy metal density (g.cm ⁻³)	14.1	9.3	13.1	12.4
Melting point (K)	1350	3000	3035	2575
λ (W.m ⁻¹ K ⁻¹)	16	2.3	26	20
T centreline (K)	1050	2350	1000	1000

Note: metal fuels with minor actinides are also considered, within international collaboration (FUTURIX, METAPHIX irradiations)

Fuel and Cycle Options

Homogeneous recycling with MA content < 3% in MOX (or MC, MN)

Heterogeneous recycling (MA loaded in "targets" ,the matrix being UO2 or U-free oxide, or metal)

Achievements from the past and present

FR09 Kyoto, Japan, December 2009

SUPERFACT: FUEL CYCLE CLOSURE DEMONSTRATION CEA-JRC

13

FR09 Kyoto, Japan, December 2009

SUPERFACT

Fuel -Materials	$(U_{0.74}Pu_{0.24}Np_{0.02})O_2$
	$(U_{0.74}Pu_{0.24}Am_{0.02})O_2$
	$(U_{0.55}Np_{0.45})O_2$
	$(U_{0.6}Am_{0.2}Np_{0.2})O_2$

- Produced by Sol-Gel Process
- Irradiated in Phenix (4 Cycles)
- Linear power: 174/273 Wcm⁻¹
- Burn up: 4.5 at%

SUPERFACT – A milestone (yet unequalled) irradiation test (CEA/ITU)

FR09 Kvoto, Japan, December 2009

Typical observations for $(U_{0.74}Pu_{0.24}Am_{00.2})O_2$ fuel:

- Restructuring very similar to that of standard MOX fuel
- Pore migration results in central hole formation
- U and Pu showed little radial distribution change
- He production increased

Achievements from the past and present

FR09 Kyoto, Japan, December 2009

15

242Cm ²⁴³Cm **HELIUM** is an issue in MA fuels 83% **EFTTRA T4 (HFR Petten)** ²⁴²Am 90% 17% ²⁴¹Am 10 w/o Am in Spinel ^{242m}Am 10% AmAlO ²³⁹Pu ²⁴²Pu ²³⁸Pu 50 µm

Before irradiation

After irradiation

EFTTRA T4: 10 w/o Am in spinel: effect of He accumulation in the pellets

EUROPEAN COMMISSION Achievements from the past and present

17

FR09 Kyoto, Japan, December 2009

EFTTRA collaboration CEA-JRC-NRG:

past and current irradiation programmes (Inert Matrix Fuels)

CER	(Zr,Y,Am)O ₂	Phenix	CAMIX	Irradiated
	(Zr,Y,Am)O ₂	HFR Petten	HELIOS 2	In pile
	(Zr,Y,Pu,Am)O ₂	HFR Petten	HELIOS 3	In pile
CERCER	$MgAl_2O_4 - AmAlO_3$	HFR Petten	EFTTRA T4	PIE complete
	MgO – AmO ₂	Phenix	ECRIX- E	PIE ongoing
	MgO – AmO ₂	Phenix	ECRIX- H	Irradiated
	MgO - $(Zr, Y, Am)O_2$	Phenix	COCHIX	Irradiated
	MgO – (Pu,Am) O_2	Phenix	FUTURIX 7	Irradiated
	MgO – (Pu,Am) O_2	Phenix	FUTURIX 8	Irradiated
	$MgO - Zr_2Am_2O_7$	HFR Petten	HELIOS 1	In pile
CERMET	Mo – (Pu,Am) O_2	Phenix	FUTURIX 5	Irradiated
	Mo – (Zr,Y,Pu,Am)O2	Phenix	FUTURIX 6	Irradiated
	Mo – (Pu,Am) O_2	HFR Petten	HELIOS	In pile
	Mo – (Zr,Y,Pu,Am)O2	HFR Petten	HELIOS	In pile

HELIOS 01

18

Non Standard Geometries: Plate fuel for GFR

<u>Axial gap</u> closed at BOL for good heat transfer <u>Radial gap</u> closed at EOL

diffusion barrier refractory metal : We, Mo, Cr,...

CEA Patent

FR09 Kyoto, Japan, December 2009

EUROPEAN COMMISSION Achievements from the past and present

FR09 Kyoto, Japan, December 2009

Plate fuel Behaviour

Looking towards the Future

SNETP - Strategic Research Agenda

3 Pillars for cross cutting fuel R&D:

- **1. Properties of MA fuel**
- 2. Multi-purpose Irradiation experiments
- 3. Separate effects and Modelling

Looking towards the Future

FR09 Kyoto, Japan, December 2009

1. Properties of MA bearing Fuels

```
GACID (F,US,J): GIF Project
```

In Europe: <u>FP7 SFR project "ESFR" (CEA, JRC, NRG)</u> - Homogeneous MA recycle Fabrication of (U,Pu, Am)C (U,Pu, Am)N Vaporisation behaviour - Heterogeneous recycle Fabrication of (U,Am)O_{2-x} Vaporisation behaviour, Melting point, Thermal conductivity

2. Multipurpose Irradiation Experiments starting 2010-2011

FP7 Project FAIRFUELS-MARIOS (CEA/JRC/NRG)

Behaviour of He in (U,Am)O_{2-x} (Heterogeneous recycle)

Samples as disks Irradiation in HFR Petten

Looking towards the Future

2. Multipurpose irradiation experiments starting 2010-2011

FP7 Project FAIRFUELS-SPHERE (JRC/NRG)

Comparison of (U,Pu,Am)O₂ irradiation behaviour (Homogeneous recycle)

Samples as Pellets SPHERE PAC Irradiation in HFR

3. Separate Effects and Modelling

FP7 Project F-Bridge

Multi partner project encompassing Material fabrication Thermophysical, thermochemical and thermomechanical properties Multi scale modelling (nm,ps) → (m, y) Science-driven fundamentals into engineering

Looking towards the Future

FR09 Kyoto, Japan, December 2009

• SNETP SRA provides a target for cross-cutting FR fuel research

- Properties of MA fuel
- Multi-purpose Irradiation experiments
- Separate effects and Modelling (ab initio to engineering scale)
- In the recent past, research concentrated on U-free fuels
- Today, priortity to fertile fuels in homogeneous or heteregeneous modes -Oxides, nitrides carbides(metals in collaboration)
- Cladding materials (T91, ODS, SiC)
- Long Lead Times
 - Licensing, transient testing...
 - Need a determined campaign from now